Transcriptomic analysis of neural stem and progenitor cells in comparison with glioblastoma stem cells

Cover Page

Cite item

Full Text

Abstract

Introduction. There is currently no effective therapy for the treatment of glioblastoma. This is partly explained by the high degree of intra- and intertumor heterogeneity of GB, the source of which is believed to be glioblastoma stem cells (GSC). The question of the origin of GSC, which is important for improving clinical outcomes, still remains open. It is believed that GSCs can be formed as a result of oncogenic transformation of neural stem and progenitor cells (NSPcs), which have morphological and functional properties similar to them. Despite significant progress in elucidating the nature of GSCs, little is yet known about the specifically expressed genes and transcripts in these cells in comparison with NSPcs. In this regard, it becomes relevant to study the molecular mechanisms of gliomagenesis using model cell systems based on various clones of GSC.

Aim. To conduct a comparative transcriptomic analysis of CD133+-NSPCs and CD133+-GSCs to study the molecular genetic differences between the phenotypes of these cells and identify potential targets for therapeutic effects on GSCs.

Materials and methods. Used: highly sensitive transcriptomic analysis on high-density microarrays, cellular technologies, modern bioinformatics analysis.

Results. Transcriptomic analysis of CD133+-GSCs and CD133+-NSPCs identified 1825 differentially expressed genes. The biological processes and signaling cascades activated in CD133+-GSCs have been established. It was shown that significant transcriptomic aberrations in CD133+-GSC compared to CD133+-NSPC are primarily due to a group of transcripts regulated by the Shh (Sonic hedgehog), mTOR (mammalian target of rapamycin), ALK (anaplastic lymphoma kinase) signaling cascades, transcription factors E2F1, PRC2, HOXA9, MYC, as well as oncogenes ERBB2 and KRAS. Six transcripts (AQP9, TOX15, HOXB2, STEAP3, TREM1, RFC2) highly expressed in CD133+-GSC and closely associated with the survival of patients with glioblastoma, which may be potential targets for therapeutic effects on CD133+-GSC associated with gliomagenesis, which may be potential targets for therapeutic effects on CD133+-GSC, have been identified and annotated.

Conclusion. The data obtained indicate a number of significant molecular genetic differences between the two cell phenotypes, which can be used in the development of new therapeutic approaches for the treatment of glioblastoma.

About the authors

V. E. Shevchenko

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Author for correspondence.
Email: vshev2015@yandex.ru
ORCID iD: 0000-0002-0401-9900

Valery E. Shevchenko.

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

N. E.  Arnotskaya

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0002-0154-8604

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

T.  I. Kushnir

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0001-9626-6847

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

A. S. Bryukhovetskiy

Clinical Hospital “NeuroVita”

Email: fake@neicon.ru
ORCID iD: 0009-0002-1583-1774

Bld. 1, 7 Marshala Tymoshenko St., Moscow 121359

Russian Federation

References

  1. Huse J.T., Holland E.C. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010;10(5):319–31. doi: 10.1038/nrc2818
  2. Chinnaiyan P., Won M., Wen P.Y. et al. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro Oncol 2018;20(5):666–73. doi: 10.1093/neuonc/nox209
  3. Roos A., Ding Z., Loftus J.C. et al. Molecular and microenvironmental determinants of glioma stem-like cell survival and invasion. Front Oncol 2017;7:120. doi: 10.3389/fonc.2017.00120
  4. Chen J., McKay R.M., Parada L.F. Malignant glioma: lessons from genomics, mouse models and stem cells. Cell 2012;149(1):36–47. doi: 10.1016/j.cell.2012.03.009
  5. Corsaro A., Bajetto A., Thellung S. et al. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 2016;7(25):38638–57. doi: 10.18632/oncotarget.9575
  6. Basak O., Taylor V. Stem cells of the adult mammalian brain and their niche. Cell Mol Life Sci 2009;66:1057–72. doi: 10.1007/s00018-008-8544-x
  7. Ryskalin L., Gaglione A., Limanaqi F. et al. The autophagy status of cancer stem cells in gliobastoma multiforme: from cancer promotion to therapeutic strategies. Int J Mol Sci 2019;20(15):3824. doi: 10.3390/ijms20153824
  8. Loras A., Gonzalez-Bonet L.G., Gutierrez-Arroyo J.L. et al. Neural stem cells as potential glioblastoma cells of origin. Life 2023;13(4):905. doi: 10.3390/life13040905
  9. Friedmann-Morvinski D. Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 2014;19(5):327–36. doi: 10.1615/CritRevOncog.2014011777
  10. Natsume A., Ito M., Katsushima K. et al. Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. Cancer Res 2013;73(14):4559–70. doi: 10.1158/0008-5472.CAN-13-0109
  11. Broekman M.L., Maas S.L.N., Abels E.R. et al. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 2018;14(8):482–95. doi: 10.1038/s41582-018-0025-8
  12. McLendon R., Friedman A., Bigner D. Comprehensive genomic characterization defines human glioblastoma genes and core path- ways. Nature 2008;455(7216):1061–8. doi: 10.1038/nature07385
  13. Bryukhovetskiy A., Shevchenko V., Kovalev S. et al. To the novel paradigm of proteome-based cell therapy of tumors: through comparative proteome mapping of tumor stem cells and tissuespecific stem cells of humans. Cell Transplant 2014;23(1): 151–70. doi: 10.3727/096368914X684907
  14. Savchenko E.A., Andreeva N.A., Dmitrieva T.B. et al. Culturing of specialized glial cells (Olfactory Ensheathing Cells) of human olfactory epithelium. Bull Exp Biol Med 2005;139(4):510–3. doi: 10.1007/s10517-005-0332-0
  15. Subramanian A., Tamayo P., Mootha V.K. et al. Gene set enrichment analysis: а knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 2005;102(43):15545–50. doi: 10.1073/pnas.0506580102
  16. Subramanian A., Kuehn H., Gould J. et al. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 2007;23(23):3251–3. doi: 10.1093/bioinformatics/btm369
  17. Wang X.X., Prager B.C., Wu Q.L. et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell 2018;22(4): 514–28. doi: 10.1016/j.stem.2018.03.011
  18. Kopylov A.M., Antipova O.A., Pavlova G.V. Molecular markers of neuro-oncogenesis in patients with glioblastoma. Voprosy neirokhirurgii imeni N.N. Burdenko = Burdenko’s Journal of Neurosurgery 2022;86(6):99–105. (In Russ.). doi: 10.17116/neiro20228606199
  19. Suva M.L., Rheinbay E., Gillespie S.M. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014;157(3):580–94. doi: 10.1016/j.cell.2014.02.030
  20. Sancho-Martinez I., Nivet E., Xia Y. et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun 2016;7(1):10743. doi: 10.1038/ncomms10743
  21. Gravendeel L.A.M., Kouwenhoven M.C.M., Gevaert O. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 2009;69:9065–72. doi: 10.1158/0008-5472.CAN-09-2307
  22. Wang H., Lai Q., Wang D. et al. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022;24(3):294. doi: 10.3892/ol.2022.13414
  23. Liu X., Zhao J., Wu Q. et al. ANKRD22 promotes glioma proliferation, migration, invasion, and epithelial-mesenchymal transition by upregulating E2F1-mediated MELK expression. J Neuropathol Exp Neurol 2023;82(7):631–40. doi: 10.1093/jnen/nlad034
  24. Chen H., Gao S., Li J. et al. Wedelolactone disrupts the interaction of EZH2-EED complex and inhibits PRC2-dependent cancer. Oncotarget 2015;6(15):13049–59. doi: 10.18632/oncotarget.3790
  25. Tang L., Peng L., Tan C. et al. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022;22(1):349. doi: 10.1186/s12935-022-02767-9
  26. Gonçalves C.S., Xavier-Magalhães A., Martins E.P. et al. A novel molecular link between HOXA9 and WNT6 in glioblastoma identifies a subgroup of patients with particular poor prognosis. Mol Oncol 2020;14(6):1224–41. doi: 10.1002/1878-0261.12633
  27. Hurtado R., Ramirez A., Nabipur L. et al. The key role of the RPS14 gene in neoplasms and solid tumors. J Assoc Genet Technol 2023;49(3):121–6.
  28. Hu S., Cai J., Fang H. et al. RPS14 promotes the development and progression of glioma via p53 signaling pathway. Exp Cell Res 2023;423(1):113451. doi: 10.1016/j.yexcr.2022.113451
  29. Han H.J., Tokino T., Nakamura Y. CSR, a scavenger receptor-like protein with a protective role against cellular damage caused by UV irradiation and oxidative stress. Hum Mol Genet 1998;7(6):1039–46. doi: 10.1093/hmg/7.6.1039
  30. Annibali D., Whitfield J.R., Favuzzi E. et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat Commun 2014;5(1):4632. doi: 10.1038/ncomms5632
  31. Fukasawa K., Kadota T., Horie T. et al. CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene 2021;40(15):2803–15. doi: 10.1038/s41388-021-01745-1
  32. Ryskalin L., Lazzeri G., Flaiban M. et al. mTOR-dependent cell proliferation in the brain. Biomed Res Int 2017;2017:7082696. doi: 10.1155/2017/7082696
  33. Mei J., Wang T., Xu R. et al. Clinical and molecular immune characterization of ERBB2 in glioma. Int Immunopharmacol 2021;94:107499. doi: 10.1016/j.intimp.2021.107499
  34. Qin Z., Liang W., Zhang Z. et al. Activated KRAS reprograms neural progenitor cells to glioma stem cell-like phenotype. Int J Oncol 2023;63(1):88. doi: 10.3892/ijo.2023.5536
  35. Koyama-Nasu R., Haruta R., Nasu-Nishimura Y. et al. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. Oncogene 2014;33(17):2236–44. doi: 10.1038/onc.2013.168
  36. Fossdal G., Vik-Mo E.O., Sandberg C. et al. Aqp 9 and brain tumor stem cells. Sci World J 2012;2012:1–9. doi: 10.1100/2012/915176
  37. Wang S., Solenov E.I., Yang B. Aquaporin Inhibitors. Adv Exp Med Biol 2023;1398:317–30. doi: 10.1007/978-981-19-7415-1_22
  38. Yan D., Yu Y., Ni Q. et al. The overexpression and clinical significance of TBX15 in human gliomas. Sci Rep 2023;13(1): 9771–83. doi: 10.1038/s41598-023-36410-y
  39. Li M., Wang J-F., Liu B. et al. Homeobox B2 is a potential prognostic biomarker of glioblastoma. Rev Ass Med Bras 2020;66:794–9. doi: 10.1590/1806-9282.66.6.794
  40. Liu Z., Wen P., Wang S. et al. HOXB2 Is a prognostic biomarker and correlated with immune infiltration in colorectal cancer and glioma. 2023. Available at: https://assets.researchsquare.com/files/rs-2898626/v1_covered_17aba4e5-9b9f-43d0-bc4a-2ccf1552aef5.pdf?c=1684474189
  41. Deng L., Zeng S., Yi Q. et al. High expression of six-transmembrane epithelial antigen of prostate 3 promotes the migration and invasion and predicts unfavorable prognosis in glioma. Peer J 2023;11:e15136. doi: 10.7717/peerj.15136
  42. Han M., Hu R., Wang S. et al. Six-transmembrane epithelial antigen of prostate 3 predicts poor prognosis and promotes glioblastoma growth and invasion. Neoplasia 2018;20 (6):543–54. doi: 10.1016/j.neo.2018.04.002
  43. Filippova N., Grimes J.M., Leavenworth J.W. et al. Targeting the TREM1-positive myeloid microenvironment in glioblastoma. Neurooncol Adv 2022;4(1):vdac149. doi: 10.1093/noajnl/vdac149
  44. Ma K., Guo Q., Zhang X. et al. High expression of triggering receptor expressed on myeloid cells 1 predicts poor prognosis in glioblastoma. Onco Targets Ther 2023;16:331–45. doi: 10.2147/OTT.S407892
  45. Siskind S., Brenner M., Wang P. TREM-1 modulation strategies for sepsis. Front Immunol 2022;13:907387. doi: 10.3389/fimmu.2022.907387
  46. Zhao X., Wang Y., Li J. et al. RFC2: a prognosis biomarker correlated with the immune signature in diffuse lower-grade gliomas. Sci Rep 2022;12 (1):3122–41. doi: 10.1038/s41598-022-06197-5
  47. Ho K.H., Kuo T.C., Lee Y.T. et al. Xanthohumol regulates miR-4749-5p-inhibited RFC2 signaling in enhancing temozolomide cytotoxicity to glioblastoma. Life Sci 2020:254:117807. doi: 10.1016/j.lfs.2020.117807

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.