Preview

Advances in Molecular Oncology

Advanced search

Dynamics of miRNA expression in urine extracellular vesicles of prostate cancer patients after radical prostatectomy

https://doi.org/10.17650/2313-805X-2024-11-1-55-78

Abstract

Introduction. It is known that the treatment of oncological diseases including prostate cancer (PCa) causes changes in the expression of oncogenic and oncosuppressive miRNAs. The analysis of miRNA expression dynamics can be used to predict the course of the disease and its response to therapy. However, the effect of PCa therapy on the expression of extracellular miRNAs is just beginning to be investigated.

Aim. To study the expression dynamics of 14 miRNAs (miR-19b, -22-3p, -30e, -31, -92a, -125b, -144, -200b, -205, -222, -375, -378a, -425, -660) in urine extracellular vesicles of PCa patients after radical prostatectomy and to reveal prognostic miRNA ratios.

Materials and methods. Urine samples of 18 donors and 18 PCa patients, obtained before radical prostatectomy, 1 week and 3 months after surgery, were examined. Extracellular vesicles were isolated by aggregation-precipitation protocol; extracellular vesicles miRNAs were isolated using fiberglass sorbents and octane acid. Data on threshold detection cycles of 14 miRNAs were obtained using reverse transcription – loop polymerase chain reaction (TaqMan).

Results. It was found that prostatectomy causes a significant change in the relative expression of 44 miRNA ratios in the urine of PCa patients. Four groups of miRNA ratios can be distinguished: 1) miRNA ratios, which expression level significantly differed between donors and PCa patients before surgery and significantly changed in PCa patients 3 months after prostatectomy in the direction of the level of donors (6 pairs); 2) miRNA ratios, which expression did not significantly differ between donors and PCa patients before surgery, but significantly differed from the baseline in PCa patients and donors 3 months after prostatectomy (5 pairs); 3) miRNA ratios, based on expression ratios of which PCa patients can be divided into two or three significantly different subgroups 3 months after prostatectomy (19 pairs); 4) miRNA ratios that did not significantly change their expression after prostatectomy (30 pairs).

Conclusion. Prostatectomy causes a significant change in the level of expression of miRNA in urine. 6 pairs of miRNAs, the relative expression of which after surgery significantly changed towards that of healthy donors and 19 pairs of miRNAs, according to the level of relative expression of which patients with prostate cancer were divided into two significantly different subgroups 3 months after prostatectomy, were identified based on the analysis of the dynamics of miRNA expression after prostatectomy.

About the Authors

E. V. Shutko
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Ekaterina Viktorovna Shutko

8 Academician Lavrentiev Prospekt, Novosibirsk 630090; 1 Pirogov St., Novosibirsk 630090



O. E. Bryzgunova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

8 Academician Lavrentiev Prospekt, Novosibirsk 630090



I. A. Ostal’cev
E.N. Meshalkin National Medical Research Center, Ministry of Health of Russia
Russian Federation

15 Rechkunovskaya St., Novosibirsk 630055



S. V. Pak
E.N. Meshalkin National Medical Research Center, Ministry of Health of Russia
Russian Federation

15 Rechkunovskaya St., Novosibirsk 630055



S. E. Krasi’nikov
E.N. Meshalkin National Medical Research Center, Ministry of Health of Russia
Russian Federation

15 Rechkunovskaya St., Novosibirsk 630055



P. P. Laktionov
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; E.N. Meshalkin National Medical Research Center, Ministry of Health of Russia
Russian Federation

8 Academician Lavrentiev Prospekt, Novosibirsk 630090; 15 Rechkunovskaya St., Novosibirsk 630055



M. Yu. Konoshenko
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
Russian Federation

8 Academician Lavrentiev Prospekt, Novosibirsk 630090



References

1. Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021. DOI: 10.1002/ijc.33588

2. Costello A.J. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat Rev Urol 2020;17(3):177–88. DOI: 10.1038/s41585-020-0287-y

3. D’Amico A.V., Chen M.H., Roehl K.A. et al. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 2004;351(2):125–35. DOI: 10.1056/NEJMoa032975

4. Porcaro A.B., Corsi P., Inverardi D. et al. Prostate-specific antigen associates with extensive lymph node invasion in high-risk prostate cancer. Tumori 2018;104(4):307–11. DOI: 10.1177/0300891618765567

5. Karakiewicz P.I., Benayoun S., Kattan M.W. et al. Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. J Urol 2005;173(6):1930–4. DOI: 10.1097/01.ju.0000158039.94467.5d

6. Bai X., Jiang Y., Zhang X. et al. The value of prostate-specific antigen-related indexes and imaging screening in the diagnosis of prostate cancer. Cancer Manag Res 2020;12:6821–6. DOI: 10.2147/CMAR.S257769

7. Pashaei E., Pashaei E., Ahmady M. et al. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One 2017;12(6):e0179543. DOI: 10.1371/journal.pone.0179543

8. Zhao Z., Stephan C., Weickmann S. et al. Tissue-based microRNAs as predictors of biochemical recurrence after radical prostatectomy: what can we learn from past studies? Int J Mol Sci 2017;18(10):2023. DOI: 10.3390/ijms18102023

9. Szilágyi M., Pös O., Márton É. et al. Circulating cell-free nucleic acids: main characteristics and clinical application. Int J Mol Sci 2020;21(18):6827. DOI: 10.3390/ijms21186827

10. Chen M., Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 2019;13(1):34. DOI: 10.1186/s40246-019-0220-8

11. Wang J., Ni J., Beretov J. et al. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 2020;145:102860. DOI: 10.1016/j.critrevonc.2019.102860

12. Zedan A.H., Hansen T.F., Assenholt J. et al. Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy. Prostate 2019;79(4):425–32. DOI: 10.1002/pros.23748

13. Konoshenko M.Y., Bryzgunova O.E., Lekchnov E.A. et al. The influence of radical prostatectomy on the expression of cell-free MiRNA. Diagnostics (Basel) 2020;10(8):600. DOI: 10.3390/diagnostics10080600

14. Bryzgunova O.E., Zaripov M.M., Skvortsova T.E. et al. Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One 2016;11(6):e0157566. DOI: 10.1371/journal.pone.0157566

15. Koppers-Lalic D., Hackenberg M., de Menezes R. et al. Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget 2016;7(16):22566–78. DOI: 10.18632/oncotarget.8124

16. Konoshenko M.Y., Laktionov P.P. MiRNAs and radical prostatectomy: Current data, bioinformatic analysis and utility as predictors of tumour relapse. Andrology 2021;9(4):1092–107. DOI: 10.1111/andr.12994

17. Abramovic I., Ulamec M., Katusic Bojanac A. et al. miRNA in prostate cancer: challenges toward translation. Epigenomics 2020;12(6):543–58. DOI: 10.2217/epi-2019-0275

18. Casanova-Salas I., Rubio-Briones J., Fernández-Serra A. et al. miRNAs as biomarkers in prostate cancer. Clin Transl Oncol 2012;14(11):803–11. DOI: 10.1007/s12094-012-0877-0

19. Filella X., Foj L. miRNAs as novel biomarkers in the management of prostate cancer. Clin Chem Lab Med 2017;55(5):715–36. DOI: 10.1515/cclm-2015-1073

20. Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. Isolation of extracellular vesicles from biological fluids via the aggregationprecipitation approach for downstream mirnas detection. Diagnostics (Basel) 2021;11(3):384. DOI: 10.3390/diagnostics11030384

21. Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S. et al. Protocol for miRNA isolation from biofluids. Anal Biochem 2016;499:78–84. DOI: 10.1016/j.ab.2016.01.025

22. Boeri M., Verri C., Conte D. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011;108(9):3713–8. DOI: 10.1073/pnas.1100048108

23. Landoni E., Miceli R., Callari M. et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinformatics 2015;16:388. DOI: 10.1186/s12859-015-0820-9

24. Zheng H., Guo Z., Zheng X. et al. MicroRNA-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by targeting CEP55. Am J Transl Res 2018;10(8):2457–68.

25. Rana S., Valbuena G.N., Curry E. et al. MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer 2022;126(3):502–13. DOI: 10.1038/s41416-021-01677-3

26. Katz B., Reis S.T., Viana N.I. et al. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer. PLoS One 2014;9(11):e113700. DOI: 10.1371/journal.pone.0113700

27. Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. The panel of 12 cell-free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics (Basel) 2020;10(1):38. DOI: 10.3390/diagnostics10010038

28. Lieb V., Weigelt K., Scheinost L. et al. Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 2017;9(12):10402–16. DOI: 10.18632/oncotarget.23781

29. Guo Z., Lu X., Yang F. et al. The Expression of miR-205 in prostate carcinoma and the relationship with prognosis in patients. Comput Math Methods Med 2022;2022:1784791. DOI: 10.1155/2022/1784791

30. Ottman R., Levy J., Grizzle W.E. et al. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget 2016;7(45):73739–53. DOI: 10.18632/oncotarget.12061

31. Zheng X.M., Zhang P., Liu M.H. et al. MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3. Int J Oncol 2019;54(2):443–54. DOI: 10.3892/ijo.2018.4647

32. Nitusca D., Marcu A., Seclaman E. et al. Diagnostic value of microRNA-375 as future biomarker for prostate cancer detection: a meta-analysis. Medicina (Kaunas) 2022;58(4):529. DOI: 10.3390/medicina58040529

33. Sun X.B., Chen Y.W., Yao Q.S. et al. MicroRNA-144 suppresses prostate cancer growth and metastasis by targeting EZH2. Technol Cancer Res Treat 2021;20:1533033821989817. DOI: 10.1177/1533033821989817

34. Rode M.P., Silva A.H., Cisilotto J. et al. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal 2021;87:110113. DOI: 10.1016/j.cellsig.2021.110113

35. Chen Q.G., Zhou W., Han T. et al. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol 2016;37(2):2095–103. DOI: 10.1007/s13277-015-3996-8

36. Sun D., Lee Y.S., Malhotra A. et al. miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 2011;71(4):1313–24. DOI: 10.1158/0008-5472.CAN-10-1031

37. Samami E., Pourali G., Arabpour M. et al. The potential diagnostic and prognostic value of circulating microRNAs in the assessment of patients with prostate cancer: rational and progress. Front Oncol 2022;11:716831. DOI: 10.3389/fonc.2021.716831

38. Shi X.B., Xue L., Ma A.H. et al. miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 2011;71(5):538–49. DOI: 10.1002/pros.21270

39. Gorur A., Bayraktar R., Ivan C. et al. ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer. Mol Ther Nucleic Acids 2021;23:930–43. DOI: 10.1016/j.omtn.2021.01.016

40. Abbas M.A., El Sayed I.E.T., Kamel Abdu-Allah A.M. et al. Expression of MiRNA-29b and MiRNA-31 and their diagnostic and prognostic values in Egyptian females with breast cancer. Noncoding RNA Res 2022;7(4):248–57. DOI: 10.1016/j.ncrna.2022.09.003

41. Ai C., Ma G., Deng Y. et al. Nm23-H1 inhibits lung cancer bonespecific metastasis by upregulating miR-660-5p targeted SMARCA5. Thorac Cancer 2020;11(3):640–50. DOI: 10.1111/1759–7714.13308


Review

For citations:


Shutko E.V., Bryzgunova O.E., Ostal’cev I.A., Pak S.V., Krasi’nikov S.E., Laktionov P.P., Konoshenko M.Yu. Dynamics of miRNA expression in urine extracellular vesicles of prostate cancer patients after radical prostatectomy. Advances in Molecular Oncology. 2024;11(1):55-78. (In Russ.) https://doi.org/10.17650/2313-805X-2024-11-1-55-78

Views: 416


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)