Immune-phenotyping and transcriptomic profiling of blood monocytes from patients with breast cancer under neoadjuvant chemotherapy
https://doi.org/10.17650/2313-805X-2024-11-1-79-89
Abstract
Introduction. Chemotherapy is a common treatment for breast cancer. Chemotherapeutic drugs effect blood monocytes, which are major contributors to cancer pathogenesis. However, to date, pro-tumor or anti-tumor programming by chemotherapy of monocytes is controversial.
Aim. To characterize changes in phenotypic and transcriptomic profiles of monocytes of breast cancer patients before and after chemotherapeutic treatment.
Materials and methods. In a cohort of 50 breast cancer patients, monocyte populations were identified based on their expression of CD14, CD16, CD163, and HLA-DR evaluated by flow cytometry before and after neoadjuvant chemotherapy. Bulk RNA sequencing was adopted to explore the transcriptomic profile of CD14+ monocytes before and after treatment. After treatment, we observed an increase in the activity of signaling pathways related to lipid metabolism and intracellular transport of vesicles from the endoplasmic reticulum, against the background of a decreased response to exposure to interferon γ and interferon α, and foreign molecules (exogenous nucleic acids, viruses and bacteria).
Results. In breast cancer patients, neoadjuvant chemotherapy decreased in CD14+16+HLA-DR+ monocytes. Under cytostatic treatment, increased gene expression of MGLL, NR4A2, UCK1, YOD1, ABCA2, PAPSS2, ATP10 (log2FoldChange ≥0.8; false discovery rate (FDR) ≤0.01) and decreased gene expression of KPNA2, ERCC4, JAGN1, RUBCNL, SMYD4, B3GALT4 (log2FoldChange ≥0.8; FDR ≤0.01) were observed in monocytes of patients. Using discriminant analysis, the relative numbers of CD14+16–, CD14+16+, CD14-16+, CD14+16-HLA-DR+, CD14+16+HLA-DR+ and CD14–16+HLA-DR+ monocytes in the blood were found to be valuable in predicting response to neoadjuvant chemotherapy.
Conclusion. Thus, association of blood monocytes with chemotherapeutic treatment in breast cancer was revealed.
About the Authors
M. R. PatyshevaRussian Federation
Marina Rinatovna Patysheva
5 Kooperativny Line, Tomsk 634009; 36 Lenin Prospekt, Tomsk 634050
M. N. Stakheyeva
Russian Federation
5 Kooperativny Line, Tomsk 634009
E. S. Grigoryeva
Russian Federation
5 Kooperativny Line, Tomsk 634009
P. S. Iamshchikov
Russian Federation
5 Kooperativny Line, Tomsk 634009; 36 Lenin Prospekt, Tomsk 634050
I. V. Larionova
Russian Federation
5 Kooperativny Line, Tomsk 634009; 36 Lenin Prospekt, Tomsk 634050
А. A. Budnickya
Russian Federation
36 Lenin Prospekt, Tomsk 634050
N. A. Tarabanovskaya
Russian Federation
5 Kooperativny Line, Tomsk 634009
N. V. Cherdyntseva
Russian Federation
5 Kooperativny Line, Tomsk 634009; 36 Lenin Prospekt, Tomsk 634050
J. G. Kzhyshkowska
Russian Federation
36 Lenin Prospekt, Tomsk 634050
References
1. Malignanttumors in Russia in 2022 (morbidity and mortality). Ed. by А.D. Kaprin, V.V. Starinskiy, A.O. Shakhzadova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2022. 250 p. (In Russ.).
2. Kim G., Pastoriza J.M., Qin J. et al. Racial disparity in distant recurrence-free survival in patients with localized breast cancer: a pooled analysis of National Surgical Adjuvant Breast and Bowel Project trials. Cancer 2022;128(14):2728–35. DOI: 10.1002/cncr.34241
3. Qiu S.Q., Waaijer S.J.H., Zwager M.C. et al. Tumor-associated macrophages in breast cancer: innocent bystander or important player? Cancer Treat Rev 2018;70:178–89. DOI: 10.1016/j.ctrv.2018.08.010
4. Linde N., Casanova-Acebes M., Sosa M.S. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Commun 2018;9(1):21. DOI: 10.1038/s41467-017-02481-5
5. Larionova I., Tuguzbaeva G., Ponomaryova A. et al. Tumorassociated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol 2020;10:566511. DOI: 10.3389/fonc.2020.566511
6. Cassetta L., Fragkogianni S., Sims A.H. et al. Human tumorassociated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 2019;35(4):588–602.e10. DOI: 10.1016/j.ccell.2019.02.009
7. Ziegler-Heitbrock L. Blood monocytes and their subsets: established features and open questions. Front Immunol 2015;6:423. DOI: 10.3389/fimmu.2015.00423
8. Olingy C.E., Dinh H.Q., Hedrick C.C. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019;106(2):309–22. DOI: 10.1002/JLB.4RI0818-311R
9. Zhang B., Cao M., He Y. et al. Increased circulating M2-like monocytes in patients with breast cancer. Tumour Biol 2017;39(6):1010428317711571. DOI: 10.1177/1010428317711571
10. Patysheva M., Larionova I., Stakheyeva M. et al. Effect of earlystage human breast carcinoma on monocyte programming. Front Oncol 2022;11:800235. DOI: 10.3389/fonc.2021.800235
11. Cassetta L., Pollard J.W. A timeline of tumour-associated macrophage biology. Nat Rev Cancer 2023;23(4):238–57. DOI: 10.1038/s41568-022-00547-1
12. Galluzzi L., Buque A., Kepp O. et al. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015;28(6):690–714. DOI: 10.1016/j.ccell.2015.10.012
13. Zitvogel L., Apetoh L., Ghiringhelli F. et al. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008;8(1):59–73. DOI: 10.1038/nri2216
14. Hughes R., Qian B.-Z., Rowan C. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 2015;75(17):3479–91. DOI: 10.1158/0008-5472.CAN-14-3587
15. Kroemer G., Galassi C., Zitvogel L. et al. Immunogenic cell stress and death. Nat Immunol 2022;23(4):487–500. DOI: 10.1038/s41590-022-01132-2
16. Stakheyeva M., Eidenzon D., Slonimskaya E. et al. Integral characteristic of the immune system state predicts breast cancer outcome. Exp Oncol 2019;41(1):32–8.
17. Dobin A., Davis C.A., Schlesinger F. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15–21. DOI: 10.1093/bioinformatics/bts635
18. Hartley S.W., Mullikin J.C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics 2015;16(1):224. DOI: 10.1186/s12859-015-0670-5
19. van Helden S.F., Anthony E.C., Dee R. et al. Rho GTPase expression in human myeloid cells. PLoS One 2012;7(8):e42563. DOI: 10.1371/journal.pone.0042563
20. Belge K.U., Dayyani F., Horelt A. et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002;168(7):3536–42. DOI: 10.4049/jimmunol.168.7.3536
21. Myśliwska J., Smardzewski M., Marek-Trzonkowska N. et al. Expansion of CD14+CD16+ monocytes producing TNF-α in complication-free diabetes type 1 juvenile onset patients. Cytokine 2012;60(1):309–17. DOI: 10.1016/j.cyto.2012.03.010
22. Mengos A.E., Gastineau D.A., Gustafson M.P. The CD14(+)HLADR(lo/neg) monocyte: an immunosuppressive phenotype that restrains responses to cancer immunotherapy. Front Immunol 2019;10:1147. DOI: 10.3389/fimmu.2019.01147
23. Robinson A., Burgess M., Webb S. et al. Systemic influences of mammary cancer on monocytes in mice. Cancers 2022:14(3):833. DOI: 10.3390/cancers14030833
24. Foulds G.A., Vadakekolathu J., Abdel-Fatah T.M.A. et al. Immunephenotyping and transcriptomic profiling of peripheral blood mononuclear cells from patients with breast cancer: identification of a 3 gene signature which predicts relapse of triple negative breast cancer. Front Immunol 2018;9:2028. DOI: 10.3389/fimmu.2018.02028
25. Rahaman O., Ganguly D. Endocannabinoids in immune regulation and immunopathologies. Immunology 2021;164:242–52. DOI: 10.1111/imm.13378
26. Xiang W., Shi R., Kang X. et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun 2018;9(1):2574. DOI: 10.1038/s41467-018-04999-8
27. Li L., Tian Y. The role of metabolic reprogramming of tumorassociated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmac 2023;161:114504. DOI: 10.1016/j.biopha.2023.114504
28. Navone N.D., Perga S., Martire S. et al. Monocytes and CD4+ T cells contribution to the under-expression of NR4A2 and TNFAIP3 genes in patients with multiple sclerosis. J Uroimmunol 2014;272(1–2): 99–102. DOI: 10.1016/j.jneuroim.2014.04.017
29. Crean D., Cummins E.P., Bahar B. et al. Adenosine modulates NR4A orphan nuclear receptors to attenuate hyperinflammatory responses in monocytic cells. J Immunol 2015;195(4):1436 48. DOI: 10.4049/jimmunol.1402039
30. Matchett E.C., Ambrose E.C., Kornbluth J. Characterization of uridinecytidine kinase like-1 nucleoside kinase activity and its role in tumor growth. Biochem J 2022;479(11):1149–64. DOI: 10.1042/BCJ20210770
31. Han Z., Jia Q., Zhang J. et al. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis. J Exp Clin Cancer Res 2023;42(1):228. DOI: 10.1186/s13046-023-02781-3
Review
For citations:
Patysheva M.R., Stakheyeva M.N., Grigoryeva E.S., Iamshchikov P.S., Larionova I.V., Budnickya А.A., Tarabanovskaya N.A., Cherdyntseva N.V., Kzhyshkowska J.G. Immune-phenotyping and transcriptomic profiling of blood monocytes from patients with breast cancer under neoadjuvant chemotherapy. Advances in Molecular Oncology. 2024;11(1):79-89. (In Russ.) https://doi.org/10.17650/2313-805X-2024-11-1-79-89