Preview

Успехи молекулярной онкологии

Расширенный поиск

Феномен РНК-интерференции в онкологии: достижения, проблемы и перспективы

https://doi.org/10.17650/2313-805X-2016-3-3-08-15

Полный текст:

Аннотация

Обзор посвящен РНК-интерференции – сравнительно недавно открытому биологическому механизму негативной регуляции экспрессии генов. В основе этого механизма лежит блок трансляции и/или деградация информационной матричной РНК под действием малых некодирующих РНК, наиболее известными представителями которых являются микроРНК и короткие интерферирующие РНК. В обзоре рассматрены молекулярные процессы образования малых РНК, механизм действия и возможность их использования в качестве противоопухолевых терапевтических препаратов. Особое внимание отведено проблеме доставки малых РНК in vivo, в том числе с помощью липосом и экзосом, и перспективам использования таких препаратов в клинической практике.

Об авторах

О. Е. Андреева
Научно-исследовательский институт канцерогенеза ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России; Россия, 115478, Москва, Каширское шоссе, 24
Россия


М. А. Красильников
Научно-исследовательский институт канцерогенеза ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России; Россия, 115478, Москва, Каширское шоссе, 24
Россия


Список литературы

1. Fire A., Xu S., Montgomery M. K. et al. Potent and specific genetic interference by double- stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806–11.

2. Hammond S. M., Bernstein E., Beach D., Hannon G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404(6775):293–6.

3. Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101(1):25–33.

4. Elbashir S. M., Harborth J., Lendeckel W. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494–8.

5. Carthew R. W., Sontheimer E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 2009;136(4):642–55.

6. Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281–97.

7. Ohshima K., Inoue K., Fujiwara A. et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 2010;5(10):e13247.

8. Nykanen A., Haley B., Zamore P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001;107(3):309–21.

9. Whitehead K. A., Langer R., Anderson D. G. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129–38.

10. Dominska M., Dykxhoorn D. M. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 2010;123 (Pt 8):1183–9.

11. Davis M. E., Zuckerman J. E., Choi C. H. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464(7291):1067– 70.

12. Burnett J. C., Rossi J. J., Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 2011;6(9):1130–46.

13. Oh Y. K., Park T. G. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009;61(10):850–62.

14. Alexis F., Pridgen E., Molnar L. K., Farokhzad O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5(4):505–15.

15. Layzer J. M., McCaffrey A.P., Tanner A. K. et al. In vivo activity of nuclease-resistant siRNAs. RNA 2004;10(5):766–71.

16. Castanotto D., Rossi J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457(7228):426–33.

17. Mosser D. M., Edwards J. P. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8(12):958–69.

18. Taylor R. C., Cullen S. P., Martin S. J. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008;9(3):231–41.

19. van de Water F. M., Boerman O. C., Wouterse A. C. et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos 2006;34(8):1393–7.

20. Stoorvogel W., Strous G. J., Geuze H. J. et al. Late endosomes derive from early endosomes by maturation. Cell 1991;65(3):417–27.

21. Martina M. S., Nicolas V., Wilhelm C. et al. The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages. Biomaterials 2007;28(28):4143–53.

22. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 1978;75(7):3327– 31.

23. Nguyen K. T., Zhao Y. Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics. Acc Chem Res 2015; 48(12):3016–25.

24. Deleavey G. F., Damha M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 2012;19(8):937–54.

25. Yu B., Zhao X., Lee L. J., Lee R. J. Targeted delivery systems for oligonucleotide therapeutics. AAPS J 2009;11(1):195–203.

26. Xu C.-F., Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci 2015;10(1):1–12.

27. Smyth T. J., Redzic J. S., Graner M. W., Anchordoquy T. J. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta 2014;1838(11):2954–65.

28. Rappaport J., Hanss B., Kopp J. B. et al. Transport of phosphorothioate oligonucleotides in kidney: implications for molecular therapy. Kidney Int 1995;47(5):1462–9.

29. Pan Q., Ramakrishnaiah V., Henry S. et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 2012;61(9):1330–9.

30. Rider M. A., Hurwitz S. N., Meckes D. G. Jr. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 2016;6:23978.

31. Love K. T., Mahon K. P., Levins C. G. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA 2010;107(5):1864–9.

32. Lee H., Lytton-Jean A. K., Chen Y. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 2012;7(6):389–93.

33. Akinc A., Querbes W., De S. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 2010;18(7):1357–64.

34. Haque M. E., McIntosh T. J., Lentz B. R. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles “Nature’s own” fusogenic lipid bilayer. Biochemistry 2001;40(14):4340–8.

35. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 1978;75(7):3327– 31.

36. Nguyen K. T., Zhao Y. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc Chem Res 2015;48(12):3016–25.

37. Salvati A., Pitek A. S., Monopoli M. P. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013;8(2):137–43.

38. Bolhassani A. Potential efficacy of cellpenetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta 2011;1816(2):232–46.

39. Campbell I. D., Humphries M. J. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 2011;3(3).

40. Semple S. C., Akinc A., Chen J. et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28(2):172–6.

41. Batrakova E. V., Kabanov A. V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008;130(2):98–106.

42. Ratajczak J., Miekus K., Kucia M. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006;20(5): 847–56.

43. Baj-Krzyworzeka M., Szatanek R., Weglarczyk K. et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 2006;55(7):808–18.

44. Deregibus M. C., Cantaluppi V., Calogero R. et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007;110(7):2440–8.

45. Skog J., Wurdinger T., van Rijn S. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature cell biology 2008;10(12):1470–6.

46. Valadi H., Ekstrom K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 2007;9(6):654–9.

47. Yuan A., Farber E. L., Rapoport A. L. et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 2009;4(3):e4722.

48. Collino F., Deregibus M. C., Bruno S. et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 2010;5(7):e11803.

49. Mittelbrunn M., Gutierrez-Vazquez C., Villarroya-Beltri C. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011;2:282.

50. Smyth T. J., Redzic J. S., Graner M. W., Anchordoquy T. J. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta 2014;1838(11):2954–65.

51. Hemler M. E. Targeting of tetraspanin proteins – potential benefits and strategies. Nat Rev Drug Discov 2008;7(9):747–58.

52. Segura E., Nicco C., Lombard B. et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005;106(1):216–23.

53. Kooijmans S. A., Stremersch S., Braeckmans K. et al. Electroporationinduced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 2013;172(1):229–38.

54. Shtam T. A., Kovalev R. A., Varfolomeeva E. Y. et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013;11:88.

55. Andaloussi S. E., Lehto T., Mager I. et al. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 2011;39(9):3972–87.

56. Munich S., Sobo-Vujanovic A., Buchser W. J. et al. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 2012;1(7): 1074–83.

57. Mittelbrunn M., Gutierrez-Vazquez C., Villarroya-Beltri C. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011;2:282.

58. Alvarez-Erviti L., Seow Y., Yin H. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011;29(4):341–5.

59. Zhang Y., Liu D., Chen X. et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010;39(1):133–44.

60. Akao Y., Iio A., Itoh T. et al. Microvesiclemediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 2011;19(2):395–99.

61. Ohno S., Takanashi M., Sudo K. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013;21(1):185–91.

62. Thery C., Boussac M., Veron P. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001;166(12):7309–18.

63. Wubbolts R., Leckie R. S., Veenhuizen P. T. et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 2003;278(13):10963–72.

64. Olson S. D., Kambal A., Pollock K. et al. Examination of mesenchymal stem cellmediated RNAi transfer to Huntington’s disease affected neuronal cells for reduction of huntingtin. Mol Cell Neurosci 2012;49(3):271–81.

65. Pegtel D. M., Cosmopoulos K., Thorley-Lawson D. A. et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 2010;107(14):6328–33.

66. Wang J. J., Wang Z. Y., Chen R. et al. Macrophage-secreted exosomes delivering miRNA- 21 inhibitor can regulate BGC-823 cell proliferation. Asian Pac J Cancer Prev 2015;16(10):4203–9.

67. Wahlgren J., De L. Karlson T., Brisslert M. et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 2012;40(17):e130.

68. Shtam T. A., Kovalev R. A., Varfolomeeva E. Y. et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013;11:88.

69. Lunavat T. R., Jang S. C., Nilsson L. et al. RNAi delivery by exosome-mimetic nanovesicles – Implications for targeting c-Myc in cancer. Biomaterials 2016;102:231–8.

70. Zhang Y., Li L., Yu J. et al. Microvesiclemediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice. Biomaterials 2014;35(14):4390– 400.

71. Greco K. A., Franzen C. A., Foreman K. E. et al. PLK-1 Silencing in bladder cancer by siRNA delivered with exosomes. Urology 2016;91:241.

72. Momen-Heravi F., Bala S., Kodys K. et al. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep 2015;5:9991.

73. Wang J. J., Wang Z. Y., Chen R. et al. acrophage-secreted exosomes delivering miRNA-21 inhibitor can regulate BGC-823 cell proliferation. Asian Pac J Cancer Prev 2015;16(10):4203– 9.

74. Zhuang X., Xiang X., Grizzle W. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated antiinflammatory drugs from the nasal region to the brain. Mol Ther 2011;19(10):1769–79.

75. Ha D., Yang N., Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016;6(4):287–96.


Для цитирования:


Андреева О.Е., Красильников М.А. Феномен РНК-интерференции в онкологии: достижения, проблемы и перспективы. Успехи молекулярной онкологии. 2016;3(3):8-15. https://doi.org/10.17650/2313-805X-2016-3-3-08-15

For citation:


Andreeva O.E., Krasil’nikov M.A. The phenomenon of RNA interference in oncology: advances, problems and perspectives. Advances in molecular oncology. 2016;3(3):8-15. (In Russ.) https://doi.org/10.17650/2313-805X-2016-3-3-08-15

Просмотров: 267


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)