Preview

Успехи молекулярной онкологии

Расширенный поиск

Белки мембранных микродоменов и их участие в онкогенезе

https://doi.org/10.17650/2313-805X-2016-3-3-16-29

Полный текст:

Об авторах

И. Б. Зборовская
Научно-исследовательский институт канцерогенеза ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России; Россия, 115478, Москва, Каширское шоссе, 24
Россия


С. А. Галецкий
Научно-исследовательский институт канцерогенеза ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России; Россия, 115478, Москва, Каширское шоссе, 24
Россия


А. В. Комельков
Научно-исследовательский институт канцерогенеза ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России; Россия, 115478, Москва, Каширское шоссе, 24
Россия


Список литературы

1. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science 1972;175(4023): 720–31.

2. Stier A., Sackmann E. Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta 1973;311(3):400–8.

3. Edidin M. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 2003;32:257–83.

4. Head B. P., Patel H. H., Insel P. A. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 2014;1838(2):532–45.

5. Nicolson G. L. Cell membrane fluidmosaic structure and cancer metastasis. Cancer Res 2015;75(7):1169–76.

6. Веснина Л. Э. Липидные рафты: роль в регуляции функционального состояния клеточных мембран. Актуальні проблеми сучасної медицини 2014;13(2(42):5–9. [Vesninа L. E. Lipid rafts: role in the regulation of the functional status of cellular membranes. Aktual’nye problemy suchsnoy meditsiny = Actual Problems Modern Medicine 2014;132 (42):5–9. (In Russ.)].

7. Martinez-Outschoorn U. E., Sotgia F., Lisanti M. P. Caveolae and signalling in cancer. Nat Rev Cancer 2015;15(4): 225–37.

8. Chavan T. S., Muratcioglu S., Marszalek R. et al. Plasma membrane regulates Ras signaling networks. Cellular logistics 2015;5(4):e1136374.

9. Nabi I. R., Shankar J., Dennis J. W. The galectin lattice at a glance. J Cell Sci 2015;128(13):2213–9.

10. Lajoie P., Goetz J. G., Dennis J. W. et al. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 2009;185(3):381–5.

11. Bodin S., Planchon D., Rios Morris E. et al. Flotillins in intercellular adhesion – from cellular physiology to human diseases. J Cell Sci 2014;127(Pt 24): 5139–47.

12. Архипова К. А., Зборовская И. Б. Микродомен-образующие белки разных семейств в регуляции общих сигнальных путей клетки. Биологические мембраны 2012;29(6):387–99. [Аrkhipovа K. А., Zborovskaya I. B. Мicrodomain-forming proteins of different familites in the regulation of general signaling cellular pathways. Biologicheskie membrany = Biological Memnbranes 2012;29 (6):387–99. (In Russ.)].

13. Rocha-Perugini V., Sanchez-Madrid F., Martinez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2015;6:653.

14. Mollinedo F., Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 2015;57:130–46.

15. Villarroya-Beltri C., Baixauli F., Gutierrez-Vazquez C. et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014;28:3–13.

16. Iraci N., Leonardi T., Gessler F. et al. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci 2016;17(2):171.

17. Zhang H. G., Grizzle W. E. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 2014;184(1):28–41.

18. Kirkham M., Nixon S. J., Howes M. T. et al. Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 2008;121(Pt 12):2075–86.

19. Fernandez I., Ying Y., Albanesi J. et al. Mechanism of caveolin filament assembly. Proc Natl Acad Sci USA 2002;99(17):11193–8.

20. Williams T. M., Lisanti M. P. The caveolin proteins. Genome Biol 2004;5(3):214.

21. Bastiani M., Parton R. G. Caveolae at a glance. J Cell Sci 2010;123(Pt 22):3831–6.

22. Lisanti M. P., Scherer P. E., Tang Z. et al. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 1994;4(7):231–5.

23. Couet J., Sargiacomo M., Lisanti M. P. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/ threonine kinase activities. J Biol Chem 1997;272(48):30429–38.

24. Roepstorff K., Thomsen P., Sandvig K. et al. Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. J Biol Chem 2002;277(21):18954–60.

25. Matveev S. V., Smart E. J. Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae. Am J Physiol Cell Physiol 2002;282(4):935–46.

26. Pike L. J. Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 2005;1746(3):260–73.

27. de Laurentiis A., Donovan L., Arcaro A. Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J 2007;1:12–32.

28. Lee H., Volonte D., Galbiati F. et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site(Tyr-14) in vivo: identification of a c- Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 2000;14(11):1750–75.

29. Engelman J. A., Zhang X. L., Razani B. et al. p42/44 MAP kinase-dependent and - independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras- MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem1999;274(45):32333–41.

30. Grande-Garcia A., Echarri A., de Rooij J. et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 2007; 177(4):683–94.

31. Beardsley A., Fang K., Mertz H. et al. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem 2005;280(5): 3541–7.

32. Yu H., Shen H., Zhang Y. et al. CAV1 promotes HCC cell progression and metastasis through Wnt/beta-catenin pathway. PLoS One 2014, 9(9):e106451.

33. Brown G. T., Murray G. I. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2015;237(3):273–81.

34. Han F., Zhu H. G. Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (MMPs) in pancreatic carcinoma cells. J Surg Res 2010;159(1): 443–50.

35. Aga M., Bradley J. M., Wanchu R. et al. Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolinsilenced trabecular meshwork cells. Invest Ophthalmol Vis Sci 2014;55(9):5497–509.

36. Williams T. M., Medina F., Badano I. et al. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase(MMP-2/9) secretion. J Biol Chem 2004;279(49):51630–46.

37. Jia L., Wang S., Zhou H. et al. Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell B 2006;38(9):1584–93.

38. Tang W., Hemler M. E. Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. J Biol Chem 2004;279(12):11112–8.

39. Muramatsu T. Basigin(CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem 2016;159(5):481–90.

40. Andreu Z., Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014;5:442.

41. Rivera-Milla E., Stuermer C. A., Malaga-Trillo E. Ancient origin of reggie (flotillin), reggie- like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci 2006;63(3):343–57.

42. Browman D. T., Hoegg M. B., Robbins S. M. The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell B 2007;17(8):394–402.

43. Stuermer C. A. The reggie/flotillin connection to growth. Trends Cell B 2010;20(1):6–13.

44. Chowdhury I., Thompson W. E., Thomas K. Prohibitins role in cellular survival through Ras-Raf-MEK-ERK pathway. J Cell Physiol 2014;229(8):998–1004.

45. Solis G. P., Hulsbusch N., Radon Y. et al. Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E- cadherin trafficking. Mol Biol Cell 2013;24(17):2689–702.

46. Koch J. C., Solis G. P., Bodrikov V. et al. Upregulation of reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite growth in vitro. Neurobiol Dis 2013;51:168–76.

47. Gomez V., Sese M., Santamaria A. et al. Regulation of aurora B kinase by the lipid raft protein flotillin-1. J Biol Chem 2010;285(27):20683–90.

48. Hazarika P., McCarty M. F., Prieto V. G. et al. Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1. Cancer Res 2004;64(20):7361–9.

49. Gallagher P. G., Romana M., Lieman J. H. et al. cDNA structure, tissue-specific expression, and chromosomal localization of the murine band 7.2b gene. Blood 1995;86(1):359–65.

50. Lapatsina L., Brand J., Poole K. et al. Stomatin-domain proteins. Eur J Cell Biol 2012;91(4):240–5.

51. Snyers L., Umlauf E., Prohaska R. Oligomeric nature of the integral membrane protein stomatin. J Biological Chem 1998;273(27):17221–6.

52. Umlauf E., Mairhofer M., Prohaska R. Characterization of the stomatin domain involved in homo-oligomerization and lipid raft association. J Biol Chem 2006;281(33):23349–56.

53. Chi H., Hu Y. H. Stomatin-like protein 2 of turbot Scopthalmus maximus: Gene cloning, expression profiling and immunoregulatory properties. Fish Shellfish immunol 2016;49:436–41.

54. Chang D., Ma K., Gong M. et al. SLP-2 overexpression is associated with tumour distant metastasis and poor prognosisin pulmonary squamous cell carcinoma. Biomarkers 2010;15(2):104–10.

55. Zhang L., Ding F., Cao W. et al. Stomatinlike protein 2 is overexpressed in cancer and involved in regulating cell growth and cell adhesion in human esophageal squamous cell carcinoma. Clin Cancer Res 2006;12(5):1639–46.

56. Cui Z., Zhang L., Hua Z. et al. Stomatin-like protein 2 is overexpressed and related to cell growth in human endometrial adenocarcinoma. Oncol Rep 2007; 17(4):829–33.

57. Cao W., Zhang B., Li J. et al. SLP-2 overexpression could serve as a prognostic factor in node positive and HER2 negative breast cancer. Pathology 2011;43(7):713–8.

58. Huang S., Tian H., Chen Z. et al. The evolution of vertebrate tetraspanins: gene loss, retention, and massive positive selection after whole genome duplications. BMC Evol Biol 2010;10:306.

59. Detchokul S., Williams E. D., Parker M. W. et al. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2014;171(24):5462–90.

60. Beckwith K. A., Byrd J. C., Muthusamy N. Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front Physiol 2015;6:91.

61. Levy S., Shoham T. Protein-protein interactions in the tetraspanin web. Physiology 2005;20:218–24.

62. Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 2001;114(Pt 23):4143–51.

63. Kumari S., Devi G. t., Badana A. et al. CD151-A Striking Marker for Cancer Therapy. Biomark Cancer 2015;7:7–11.

64. Zhou P., Erfani S., Liu Z. et al. CD151-alpha3beta1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget 2015;6(30): 29675–93.

65. Qin Y., Mohandessi S., Gordon L. et al. Regulation of FAK Activity by Tetraspan Proteins: Potential Clinical Implications in Cancer. Crit Rev Oncog 2015;20(5–6):391–405.

66. Stewart R. L., West D., Wang C. et al. Elevated integrin alpha6beta4 expression is associated with venous invasion and decreased overall survival in non-small cell lung cancer. Hum Pathol 2016;54:174–83.

67. Romanska H. M., Potemski P., Kusinska R. et al. Expression of CD151/ Tspan24 and integrin alpha 3 complex in aid of prognostication of HER2-negative highgrade ductal carcinoma in situ. Int J Clin Exp Pathol 2015;8(8):9471–8.

68. Ke A. W., Zhang P. F., Shen Y. H. et al. Generation and characterization of a tetraspanin CD151/integrin alpha6beta1- binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC. Oncotarget 2016;7(5):6314–22.

69. Berditchevski F., Odintsova E. ErbB receptors and tetraspanins: Casting the net wider. Int J Biochem Cell B 2016;7(Pt A): 68–71.

70. Sadej R., Grudowska A., Turczyk L. et al. CD151 in cancer progression and metastasis: a complex scenario. Lab Invest 2014;94(1):41–51.

71. Hong I. K., Jin Y. J., Byun H. J. et al. Homophilic interactions of Tetraspanin CD151 up- regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem 2006;281(34):24279–92.

72. Miranti C. K. Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cellular Signalling 2009;21(2):196–211.

73. Nazarenko I., Rana S., Baumann A. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 2010;70(4):1668–78.

74. Yue S., Mu W., Erb U. et al. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget 2015;6(4):2366–84.

75. Rana S., Zöller M. The Functional Importance of Tetraspanins in Exosomes Emerging Concepts of Tumor Exosomes- Mediated Cell-Cell Communication. Edited by Z.-H. Zhang. Springer Science + Business Media. New York, 2013. Pp. 69–106.

76. Sandfeld-Paulsen B., Jakobsen K. R., Baek R. et al. Exosomal Proteins as Diagnostic Biomarkers in Lung Cancer. J Thorac Oncol 2016.

77. Murayama Y., Shinomura Y., Oritani K. et al. The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 2008;216(1):135–43.

78. Tejera E., Rocha-Perugini V., Lopez-Martin S. et al. CD81 regulates cell migration through its association with Rac GTPase. Mol Biol Cell 2013;24(3):261–73.

79. Lafleur M. A., Xu D., Hemler M. E. Tetraspanin proteins regulate membrane type- 1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 2009;20(7):2030–40.

80. Seubert B., Cui H., Simonavicius N. et al. Tetraspanin CD63 acts as a pro-metastatic factor via beta-catenin stabilization. Int J Cancer 2015;136(10):2304–15.

81. Saito Y., Tachibana I., Takeda Y. et al. Absence of CD9 enhances adhesiondependent morphologic differentiation, survival, and matrix metalloproteinase-2 production in small cell lung cancer cells. Cancer Res 2006;66(19):9557–65.

82. Cao Z. Q., Guo X. L. The role of galectin-4 in physiology and diseases. Protein Cell 2016;7(5):314–24.

83. Wang L., Guo X. L. Molecular regulation of galectin-3 expression and therapeutic implication in cancer progression. Biomed Pharmacother 2016;78:165–71.

84. Timoshenko A. V. Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions. Cell Mol Life Sci 2015;2(22):4327–40.

85. Argueso P., Mauris J., Uchino Y. Galectin-3 as a regulator of the epithelial junction: Implications to wound repair and cancer. Tissue Barriers 2015;3(3):e1026505.

86. Demers M., Magnaldo T., Stрierre Y. A novel function for galectin-7: promoting tumorigenesis by up-regulating MMP-9 gene expression. Cancer Res 2005;65(12):5205–10.

87. Wu M. H., Hong T. M., Cheng H. W. et al. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res 2009;7(3):311–8.

88. Prudova A., auf dem Keller U., Butler G. S. et al. Multiplex N-terminome analysis of MMP- 2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 2010;9(5):894–911.

89. Ochieng J., Green B., Evans S. et al. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim Biophys Acta 1998;1379(1):97–106.

90. Goetz J. G., Joshi B., Lajoie P. et al. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosinephosphorylated caveolin-1. J Cell B 2008;180(6):1261–75.

91. Bist A., Fielding C. J., Fielding P. E. p53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism. Biochemistry 2000;39(8):1966–72.

92. Dumic J., Lauc G., Flogel M. Expression of galectin-3 in cells exposed to stress-roles of jun and NF-kappaB. Cell Physiol Biochem 2000;10(3):149–58.

93. Sasaki Y., Oshima Y., Koyama R. et al. Identification of flotillin-2, a major protein on lipid rafts, as a novel target of p53 family members. Mol Cancer Res 2008;6(3):395–406.

94. Banning A., Ockenga W., Finger F. et al. Transcriptional regulation of flotillins by the extracellularly regulated kinases and retinoid X receptor complexes. PloS One 2012;7(9):e45514.

95. Cao S., Fernandez-Zapico M. E., Jin D. et al. KLF11-mediated repression antagonizes Sp1/sterol-responsive element-binding protein-induced transcriptional activation of caveolin-1 in response to cholesterol signaling. J Biol Chem 2005;280(3):1901–10.

96. Wang J., Liu X., Ni P. et al. SP1 is required for basal activation and chromatin accessibility of CD151 promoter in liver cancer cells. Biochem Biophys Res Commun 2010;393(2):291–6.

97. Kathuria H., Cao Y. X., Ramirez M. I. et al. Transcription of the caveolin-1 gene is differentially regulated in lung type I epithelial and endothelial cell lines. A role for ETS proteins in epithelial cell expression. J Biol Chem 2004;279(29):30028–36.

98. Hoshino I., Matsubara H. MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surgery today 2013;43(5):467–78.

99. Butz H., Szabo P. M., Khella H. W. et al. miRNA-target network reveals miR-124 as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget 2015;6(14):12543–57.

100. Sygitowicz G., Tomaniak M., Blaszczyk O. et al. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch Cardiovasc Dis 2015;108(12):634–42.

101. Gong H., Song L., Lin C. et al. Downregulation of miR-138 sustains NF-kappaB activation and promotes lipid raft formation in esophageal squamous cell carcinoma. Clin Cancer Res 2013;19(5):1083–93.

102. Wu L., Zhao Q., Zhu X. et al. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol 2010;20(6):1042–54.

103. Kang M., Ren M. P., Zhao L. et al. miR-485-5p acts as a negative regulator in gastric cancer progression by targeting flotillin- 1. Am J Transl Res 2015;7(11):2212–22.

104. Yang F. Q., Zhang H. M., Chen S. J. et al. MiR-506 is down-regulated in clear cell renal cell carcinoma and inhibits cell growth and metastasis via targeting FLOT1. PloS One 2015;10(3):e0120258.

105. Liu R., Xie H., Luo C. et al. Identification of FLOT2 as a novel target for microRNA-34a in melanoma. J Cancer Res Clin Oncol 2015;141(6):993–1006.

106. Yang Q., Jiang W., Zhuang C. et al. microRNA-22 downregulation of galectin-9 influences lymphocyte apoptosis and tumor cell proliferation in liver cancer. Oncology reports 2015;34(4): 1771–8.

107. Huang X., Yuan T., Tschannen M. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013;14:319.

108. Zhang L. Y., Liu M., Li X. et al. miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem 2013;288(6): 4035–47.

109. Lin Q. H., Zhang K. D., Duan H. X. et al. ERGIC3, which is regulated by miR-203a, is a potential biomarker for non-small cell lung cancer. Cancer Sci 2015;106(10):1463–73.

110. Sandvig K., Torgersen M. L., Raa H. A. et al. Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 2008;129(3):267–76


Рецензия

Для цитирования:


Зборовская И.Б., Галецкий С.А., Комельков А.В. Белки мембранных микродоменов и их участие в онкогенезе. Успехи молекулярной онкологии. 2016;3(3):16-29. https://doi.org/10.17650/2313-805X-2016-3-3-16-29

For citation:


Zborovskaya I.B., Galetskiy S.A., Komel’kov A.V. Microdomain forming proteins in oncogenesis. Advances in Molecular Oncology. 2016;3(3):16-29. (In Russ.) https://doi.org/10.17650/2313-805X-2016-3-3-16-29

Просмотров: 637


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)