Потенциальные возможности использования в онкологии ингибиторов обратной транскриптазы вирусов
- Авторы: Власова О.А.1, Антонова И.А.1, Магомедова Х.М.1,2, Усолкина М.А.2, Кирсанов К.И.1,3, Белицкий Г.А.1, Валиев Т.Т.1,4, Якубовская М.Г.1
-
Учреждения:
- ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
- Институт тонких химических технологий им. М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет»
- ФГАОУ ВО «Российский университет дружбы народов»
- ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России
- Выпуск: Том 11, № 2 (2024)
- Страницы: 8-28
- Раздел: ОБЗОРНЫЕ СТАТЬИ
- Статья опубликована: 27.06.2024
- URL: https://umo.abvpress.ru/jour/article/view/673
- DOI: https://doi.org/10.17650/2313-805X-2024-11-2-8-28
- ID: 673
Цитировать
Полный текст
Аннотация
В работе проанализированы статьи, посвященные изучению функционирования фермента обратной транскриптазы эндогенных повторяющихся последовательностей LINE1, механизмов действия и противоопухолевой активности ингибиторов обратной транскриптазы вирусов, имеющиеся в информационных базах биомедицинской литературы SciVerse Scopus, PubMed, Web of Science и РиНЦ (Российский индекс научного цитирования). В обзоре использована информация 140 работ, 95 и 39 из которых были опубликованы в течение 10 и 3 последних лет соответственно; 2 работы представляют собой результаты клинических исследований, а в 45 описаны противоопухолевые свойства исследуемых соединений на различных моделях in vitro и in vivo.
Цель работы – на основании данных о функциональных свойствах фермента обратной транскриптазы эндогенных повторяющихся последовательностей LINE1 (long interspersed nuclear elements 1) проанализировать потенциальную возможность использования в онкологии ингибиторов обратной транскриптазы вирусов, представив их классификацию и основные механизмы действия.
Около 98 % генома человека составляют повторяющиеся последовательности, в основном мобильные генетические элементы, активация которых приводит к повышению нестабильности генома. В их число входят длинные (LINE) и короткие (short interspersed nuclear element, SINE) повторяющиеся последовательности ДНК, занимающие около 45 % генома человека. Повышения уровня экспрессии этих последовательностей в геноме выявлены при многих формах злокачественных новообразований. их транспозиция происходит благодаря экспрессии кодируемой LINE1 обратной транскриптазы, гомологичной обратной транскриптазе вирусов. к настоящему времени разработаны и успешно применяются в клинической практике ингибиторы обратной транскриптазы вирусов нуклеозидной и ненуклеозидной структур. Эти препараты демонстрируют ингибирующее действие как на обратную транскриптазу LINE1, так и на теломеразу, которая обеспечивает способность опухолевой клетки преодолевать репликативное старение. Благодаря этим свойствам, данные соединения, как ожидается, должны проявлять собственную противоопухолевую активность и повышать чувствительность опухолевых клеток к проводимой терапии злокачественных новообразований, что экспериментально подтверждается на моделях злокачественных новообразований in vitro и in vivo. Таким образом, использование в комбинированной терапии ингибиторов обратной транскриптазы представляется целесообразным как для предотвращения дальнейших перестроек генома, вызываемых LINE1, так и для подавления выживаемости опухолевых клеток путем ингибирования теломеразной активности.
Об авторах
О. А. Власова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Автор, ответственный за переписку.
Email: olya_vlasov@mail.ru
ORCID iD: 0000-0002-1498-849X
Ольга Александровна Власова
115522; Каширское шоссе, 24; Москва
РоссияИ. А. Антонова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0009-0004-3482-8954
115522; Каширское шоссе, 24; Москва
РоссияХ. М. Магомедова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; Институт тонких химических технологий им. М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет»
Email: fake@neicon.ru
ORCID iD: 0009-0004-8514-3859
115522; Каширское шоссе, 24; 119671; пр-кт Вернадского, 86; Москва
РоссияМ. А. Усолкина
Институт тонких химических технологий им. М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет»
Email: fake@neicon.ru
119671; пр-кт Вернадского, 86; Москва
РоссияК. И. Кирсанов
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГАОУ ВО «Российский университет дружбы народов»
Email: fake@neicon.ru
ORCID iD: 0000-0002-8599-6833
115522; Каширское шоссе, 24; 117198; ул. Миклухо-Маклая, 6; Москва
РоссияГ. А. Белицкий
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-3167-7204
115522; Каширское шоссе, 24; Москва
РоссияТ. Т. Валиев
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-1469-2365
115522; Каширское шоссе, 24; 119048; ул. Трубецкая, 8, стр. 2; Москва
РоссияМ. Г. Якубовская
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-9710-8178
115522; Каширское шоссе, 24; Москва
РоссияСписок литературы
- Haber D.A., Gray N.S., Baselga J. The evolving war on cancer. Cell 2011;145(1):19–24. doi: 10.1016/j.cell.2011.03.026
- Heng J., Heng H.H. Genome chaos, information creation, and cancer emergence: searching for new frameworks on the 50th anniversary of the “War on Cancer.” Genes (Basel) 2021;13(1):101. doi: 10.3390/genes13010101
- Martincorena I., Roshan A., Gerstung M. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015;348(6237):880–6. doi: 10.1126/science.aaa6806
- Yokoyama A., Kakiuchi N., Yoshizato T. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 2019;565(7739):312–7. doi: 10.1038/s41586-018-0811-x
- Lee-Six H., Olafsson S., Ellis P. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 2019;574(7779):532–7. doi: 10.1038/s41586-019-1672-7
- Keogh M.J., Wei W., Aryaman J. et al. High prevalence of focal and multifocal somatic genetic variants in the human brain. Nat Commun 2018;9(1):4257. doi: 10.1038/s41467-018-06331-w
- Yizhak K., Aguet F., Kim J. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 2019;364(6444):eaaw0726. doi: 10.1126/science.aaw0726
- Maher B. ENCODE: the human encyclopaedia. Nature 2012;489(7414): 46–8. doi: 10.1038/489046a
- Nebbioso A., Tambaro F.P., Dell’Aversana C., Altucci L. Cancer epigenetics: moving forward. PLoS Genet 2018;14(6):e1007362. doi: 10.1371/journal.pgen.1007362
- Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059
- Flavahan W.A., Gaskell E., Bernstein B.E. Epigenetic plasticity and the hallmarks of cancer. Science 2017;357(6348):eaal2380. doi: 10.1126/science.aal2380
- Hendrix M.J.C., Seftor E.A., Seftor R.E.B. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 2007;7(4):246–55. doi: 10.1038/nrc2108
- Lu Y., Chan Y.T., Tan H.Y. et al. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 2020;19(1):79. doi: 10.1186/s12943-020-01197-3
- de Thé H. Differentiation therapy revisited. Nat Rev Cancer 2018;18(2):117–27. doi: 10.1038/nrc.2017.103
- Fulghieri P., Stivala L.A., Sottile V. Modulating cell differentiation in cancer models. Biochem Soc Trans 2021;49(4):1803–16. doi: 10.1042/BST20210230
- Holoch D., Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 2015;16(2):71–84. doi: 10.1038/nrg3863
- Spadafora C. The epigenetic basis of evolution. Prog Biophys Mol Biol 2023;178:57–69. doi: 10.1016/j.pbiomolbio.2023.01.005
- Hubisz M.J., Pollard K.S. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr Opin Genet Dev 2014;29:15–21. doi: 10.1016/j.gde.2014.07.005
- Lander E.S., Linton L.M., Birren B. et al. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921. doi: 10.1038/35057062
- Bourque G., Burns K.H., Gehring M. et al. Ten things you should know about transposable elements. Genome Biol 2018;19(1):199. doi: 10.1186/s13059-018-1577-z
- Richardson S.R., Doucet A.J., Kopera H.C. et al. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 2015;3(2):MDNA3-0061-2014. doi: 10.1128/microbiolspec.MDNA3-0061-2014
- Houck C.M., Rinehart F.P., Schmid C.W. A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol 1979;132(3):289–306. doi: 10.1016/0022-2836(79)90261-4
- Gianfrancesco O., Geary B., Savage A.L. et al. The role of SINE-VNTR-Alu (SVA) retrotransposons in shaping the human genome. Int J Mol Sci 2019;20(23):5977. doi: 10.3390/ijms20235977
- Ivics Z. Genomic parasites and genome evolution. Genome Biol 2009;10(4):306. doi: 10.1186/gb-2009-10-4-306
- Hancks D.C., Goodier J.L., Mandal P.K. et al. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 2011;20(17):3386–400. doi: 10.1093/hmg/ddr245
- Brouha B., Schustak J., Badge R.M. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 2003;100(9):5280–5. doi: 10.1073/pnas.0831042100
- Belancio V.P., Roy-Engel A.M., Deininger P.L. All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 2010;20(4):200–10. doi: 10.1016/j.semcancer.2010.06.001
- Chénais B. Transposable elements and human diseases: mechanisms and implication in the response to environmental pollutants. Int J Mol Sci 2022;23(5):2551. doi: 10.3390/ijms23052551
- Moran J.V., DeBerardinis R.J., Kazazian H.H. Exon shuffling by L1 retrotransposition. Science 1999;283(5407):1530–4. doi: 10.1126/science.283.5407.1530
- Tubio J.M.C., Li Y., Ju Y.S. et al. Extensive transduction of non-repetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 2014;345(6196):1251343. doi: 10.1126/science.1251343
- Ardeljan D., Steranka J.P., Liu C. et al. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol 2020;27(2):168–78. doi: 10.1038/s41594-020-0372-1
- Faulkner G.J., Kimura Y., Daub C.O. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009;41(5):563–71. doi: 10.1038/ng.368
- Hata K., Sakaki Y. Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 1997;189(2):227–34. doi: 10.1016/S0378-1119(96)00856-6
- Li H., Zimmerman S.E., Weyemi U. Genomic instability and metabolism in cancer. In: International review of cell and molecular biology. Ed. by U. Weyemi, L. Galluzzi. Vol. 364. Chromatin and Genomic Instability in Cancer. Academic Press, 2021. Pp. 241–265. doi: 10.1016/bs.ircmb.2021.05.004
- Chen M., Linstra R., van Vugt M.A.T.M. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Act Rev Cancer 2022;1877(1):188661. doi: 10.1016/j.bbcan.2021.188661
- Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020;52(3):306–19. doi: 10.1038/s41588-019-0562-0
- Hancks D.C., Kazazian H.H. Roles for retrotransposon insertions in human disease. Mob DNA 2016;7:9. doi: 10.1186/s13100-016-0065-9
- Iskow R.C., McCabe M.T., Mills R.E. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010;141(7):1253–61. doi: 10.1016/j.cell.2010.05.020
- Solyom S., Ewing A.D., Rahrmann E.P. et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 2012;22(12):2328–38. doi: 10.1101/gr.145235.112
- Doucet-O’Hare T.T., Rodić N., Sharma R. et al. LINE-1 expression and retrotransposition in Barrett’s esophagus and esophageal carcinoma. Proc Natl Acad Sci USA 2015;112(35):E4894–900. doi: 10.1073/pnas.1502474112
- Rodić N., Steranka J.P., Makohon-Moore A. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat Med 2015;21(9):1060–4. doi: 10.1038/nm.3919
- Ewing A.D., Gacita A., Wood L.D. et al. Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res 2015;25(10):1536–45. doi: 10.1101/gr.196238.115
- Tang Z., Steranka J.P., Ma S. et al. Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc Natl Acad Sci USA 2017;114(5):E733–40. doi: 10.1073/pnas.1619797114
- Lee E., Iskow R., Yang L. et al. Landscape of somatic retrotransposition in human cancers. Science 2012;337(6097):967–71. doi: 10.1126/science.1222077
- Shukla R., Upton K.R., Muñoz-Lopez M. et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013;153(1):101–11. doi: 10.1016/j.cell.2013.02.032
- Protasova M.S., Andreeva T.V., Rogaev E.I. Factors regulating the activity of LINE1 retrotransposons. Genes (Basel) 2021;12(10): 1562. doi: 10.3390/genes12101562
- Izquierdo-Bouldstridge A., Bustillos A., Bonet-Costa C. et al. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats. Nucleic Acids Res 2017;45(20):11622–42. doi: 10.1093/nar/gkx746
- Izzo A., Kamieniarz-Gdula K., Ramírez F. et al. The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep 2013;3(6):2142–54. doi: 10.1016/j.celrep.2013.05.003
- Hatanaka Y., Inoue K., Oikawa M. et al. Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc Natl Acad Sci USA 2015;112(47):14641–6. doi: 10.1073/pnas.1512775112
- Healton S.E., Pinto H.D., Mishra L.N. et al. H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc Natl Acad Sci USA 2020;117(25):14251–8. doi: 10.1073/pnas.1920725117
- Liu Y.M., Liou J.P. An updated patent review of histone deacetylase (HDAC) inhibitors in cancer. Expert Opin Ther Pat 2023;33(5): 349–69. doi: 10.1080/13543776.2023.2219393
- Lopez M., Gilbert J., Contreras J. et al. Inhibitors of DNA methylation. Adv Exp Med Biol 2022;1389:471–513. doi: 10.1007/978-3-031-11454-0_17
- Benafif S., Hall M. An update on PARP inhibitors for the treatment of cancer. Onco Targets Ther 2015;8:519–28. doi: 10.2147/OTT.S30793
- Khazina E., Truffault V., Büttner R. et al. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat Struct Mol Biol 2011;18(9):1006–14. doi: 10.1038/nsmb.2097
- Alisch R.S., Garcia-Perez J.L., Muotri A.R. et al. Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 2006;20(2):210–24. doi: 10.1101/gad.1380406
- Taylor M.S., LaCava J., Mita P. et al. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 2013;155(5):1034–48. doi: 10.1016/j.cell.2013.10.021
- Flasch D.A., Macia Á., Sánchez L. et al. Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication. Cell 2019;177(4):837–51.e28. doi: 10.1016/j.cell.2019.02.050
- Cost G.J., Feng Q., Jacquier A. et al. Human L1 element target-primed reverse transcription in vitro. EMBO J 2002;21(21):5899–910. doi: 10.1093/emboj/cdf592
- Su Y., Davies S., Davis M. et al. Expression of LINE-1 p40 protein in pediatric malignant germ cell tumors and its association with clinicopathological parameters: a report from the Children’s Oncology Group. Cancer Lett 2007;247(2):204–12. doi: 10.1016/j.canlet.2006.04.010
- Mangiacasale R., Pittoggi C., Sciamanna I. et al. Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene 2003;22(18):2750–61. doi: 10.1038/sj.onc.1206354
- Landriscina M., Fabiano A., Altamura S. et al. Reverse transcriptase inhibitors down-regulate cell proliferation in vitro and in vivo and restore thyrotropin signaling and iodine uptake in human thyroid anaplastic carcinoma. J Clin Endocrinol Metab 2005;90(10):5663-5671. doi: 10.1210/jc.2005-0367
- Wang G., Gao J., Huang H. et al. Expression of a LINE-1 endonuclease variant in gastric cancer: its association with clinicopathological parameters. BMC Cancer 2013;13:265. doi: 10.1186/1471-2407-13-265
- Chen L., Dahlstrom J.E., Chandra A. et al. Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Res Treat 2012;136(1):129–42. doi: 10.1007/s10549-012-2246-7
- Gualtieri A., Andreola F., Sciamanna I. et al. Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression. Oncotarget 2013;4(11):1882–93.
- De Luca C., Guadagni F., Sinibaldi-Vallebona P. et al. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation. Oncotarget 2015;7(4):4048–61. doi: 10.18632/oncotarget.6767
- Sciamanna I., De Luca C., Spadafora C. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression, and therapy of cancer. Front Chem 2016;4:6. doi: 10.3389/fchem.2016.00006
- Aschacher T., Wolf B., Enzmann F. et al. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene 2016;35(1):94–104. doi: 10.1038/onc.2015.65
- Sciamanna I., Sinibaldi-Vallebona P., Serafino A. et al. LINE-1-encoded reverse Transcriptase as a target in cancer therapy. Front Biosci (Landmark Ed) 2018;23(7):1360–9. doi: 10.2741/4648
- Prokofjeva M.M., Kochetkov S.N., Prassolov V.S. Therapy of HIV infection: current approaches and prospects. Acta Naturae 2016;8(4):23–32. doi: 10.32607/20758251-2016-8-4-23-32
- Li G., Wang Y., De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm Sin B 2022;12(4):1567–90. doi: 10.1016/j.apsb.2021.11.009
- Young M.J. Off-target effects of drugs that disrupt human mitochondrial DNA maintenance. Front Mol Biosci 2017;4:74. doi: 10.3389/fmolb.2017.00074
- Benedicto A.M., Fuster-Martínez I., Tosca J. et al. NNRTI and liver damage: evidence of their association and the mechanisms involved. Cells 2021;10(7):1687. doi: 10.3390/cells10071687
- Furman P.A., Fyfe J.A., St Clair M.H. et al. Phosphorylation of 3’-azido-3’-deoxythymidine and selective interaction of the 5’-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 1986;83(21):8333–7. doi: 10.1073/pnas.83.21.8333
- Rousseau F.S., Wakeford C., Mommeja-Marin H. et al. Prospective randomized trial of emtricitabine versus lamivudine short-term monotherapy in human immunodeficiency virus-infected patients. J Infect Dis 2003;188(11):1652–8. doi: 10.1086/379667
- Kuretu A., Arineitwe C., Mothibe M. et al. Drug-induced mitochondrial toxicity: risks of developing glucose handling impairments. Front Endocrinol (Lausanne) 2023;14:1123928. doi: 10.3389/fendo.2023.1123928
- McKee E.E., Bentley A.T., Hatch M. et al. Phosphorylation of thymidine and AZT in heart mitochondria. Cardiovasc Toxicol 2004;4(2):155–67. doi: 10.1385/ct:4:2:155
- Smith R.L., Tan J.M.E., Jonker M.J. et al. Beyond the polymerase-γ theory: production of ROS as a mode of NRTI-induced mitochon-drial toxicity. PLoS One 2017;12(11):e0187424. doi: 10.1371/journal.pone.0187424
- Mataramvura H., Bunders M.J., Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023;14:1182217. doi: 10.3389/fimmu.2023.1182217
- Lewis W., Day B.J., Copeland W.C. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2003;2(10):812–22. doi: 10.1038/nrd1201
- Torres R.A., Lewis W. Aging and HIV/AIDS: pathogenetic role of therapeutic side effects. Lab Invest 2014;94(2):120–8. doi: 10.1038/labinvest.2013.142
- HIV 2014/15: www.hivbuch.de. Ed. by C. Hoffmann, J. Rockstroh. Medizin Fokus Verlag, 2014.
- Rock A.E., Lerner J., Badowski M.E. Doravirine and its potential in the treatment of HIV: an evidence-based review of the emerging data. HIV AIDS (Auckl) 2020;12:201–10. doi: 10.2147/HIV.S184018
- Terrault N.A., Lok A.S., McMahon B.J. et al. Update on prevention, diagnosis, and treatment and of chronic hepatitis B: AASLD 2018 Hepatitis B Guidance. Hepatology (Baltimore, Md) 2018;67(4): 1560. URL: https://www.hcvguidelines.org/references/terrault-2018
- de Fraga R.S., Van Vaisberg V., Mendes L.C.A. et al. Adverse events of nucleos(t)ide analogues for chronic hepatitis B : a systematic review. J Gastroenterol 2020;55(5):496–514. doi: 10.1007/s00535-020-01680-0
- Battini L., Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type-1 non-nucleoside reverse transcriptase inhibitors. Med Res Rev 2019;39(4):1235-1273. doi: 10.1002/med.21544
- Wallace J., Gonzalez H., Rajan R. et al. Anti-HIV drugs cause mitochondrial dysfunction in monocyte-derived macrophages. Antimicrob Agents Chemother 2022;66(4):e01941–21. doi: 10.1128/aac.01941-21
- Arts E.J., Wainberg M.A. Mechanisms of nucleoside analog antiviral activity and resistance during human immunodeficiency virus reverse transcription. Antimicrob Agents Chemother 1996;40(3):527–40. doi: 10.1128/AAC.40.3.527
- Dai L., Huang Q., Boeke J.D. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 2011;12:18. doi: 10.1186/1471-2091-12-18
- Jones R.B., Garrison K.E., Wong J.C. et al. Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS One 2008;3(2):e1547. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001547
- Banuelos-Sanchez G., Sanchez L., Benitez-Guijarro M. et al. Synthesis and Characterization of Specific Reverse Transcriptase Inhibitors for Mammalian LINE-1 Retrotransposons. Cell Chem Biol 2019;26(8):1095–1109.e14. doi: 10.1016/j.chembiol.2019.04.010
- Carlini F., Ridolfi B., Molinari A. et al. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines. PLoS One 2010;5(12):e14221. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014221
- Simon M., Meter M.V., Ablaeva J. et al. LINE1 derepression in aged wild type and SIRT6 deficient mice drives inflammation. Cell Metab 2019;29(4):871–85.e5. doi: 10.1016/j.cmet.2019.02.014
- Bersani F., Lee E., Kharchenko P.V. et al. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci USA 2015;112(49):15148–53. doi: 10.1073/pnas.1518008112
- Shao J., Wang Y., Hu L. et al. Lower risk of hepatocellular carcinoma with tenofovir than entecavir in antiviral treatment-naïve chronic hepatitis B patients : a systematic review and meta-analysis involving 90,897 participants. Clin Exp Med 2023;23(6):2131–40. doi: 10.1007/s10238-023-00990-w
- Houédé N., Pulido M., Mourey L. et al. A phase ii trial evaluating the efficacy and safety of efavirenz in metastatic castration-resistant prostate cancer. Oncologist 2014;19(12):1227–8. doi: 10.1634/theoncologist.2014-0345
- Rajurkar M., Parikh A.R., Solovyov A. et al. Reverse transcriptase inhibition disrupts repeat element life cycle in colorectal cancer. Cancer Discov 2022;12(6):1462–81. doi: 10.1158/2159-8290.CD-21-1117
- Yang J., Xu W.W., Hong P. et al. Adefovir dipivoxil sensitizes colon cancer cells to vemurafenib by disrupting the KCTD12-CDK1 interaction. Cancer Lett 2019;451:79–98. doi: 10.1016/j.canlet.2019.02.050
- Şekeroğlu Z.A., Şekeroğlu V. and Küçük N. Effects of reverse transcriptase inhibitors on proliferation, apoptosis, and migration in breast carcinoma cells. Int J Toxicol 2021;40(1):52–61. doi: 10.1177/1091581820961498
- Sherif D.A., Makled M.N., Suddek G.M. The HIV reverse transcriptase Inhibitor Tenofovir suppressed DMH/HFD-induced colorectal cancer in Wistar rats. Fundam Clin Pharmacol 2021;35(6):940–54. doi: 10.1111/fcp.12679
- Abouelezz H.M., El-Kashef D.H., Abdеlaziz R.R. et al. Tenofovir alone or combined with doxorubicin abrogates DMBA-induced mammary cell carcinoma: An insight into its modulatory impact on oxidative/Notch/apoptotic signaling. Life Sci 2023;326:121798. doi: 10.1016/j.lfs.2023.121798
- Tsai W.L., Cheng J.S., Liu P.F. et al. Sofosbuvir induces gene expression for promoting cell proliferation and migration of hepatocellular carcinoma cells. Aging (Albany NY) 2022;14(14):5710–26. doi: 10.18632/aging.204170
- Aschacher T., Sampl S., Käser L. et al. The combined use of known antiviral reverse transcriptase inhibitors AZT and DDI induce anticancer effects at low concentrations. Neoplasia 2012;14(1):44–53. doi: 10.1593/neo.11426
- Horner M.J., Hazra R., Barnholtz-Sloan J.S. et al. Cancer risk among HIV-exposed uninfected children in the United States. AIDS 2023;37(3):549–51. URL: https://www.researchgate.net/publication/366545482_Cancer_risk_among_HIV-exposed_uninfected_children_in_the_United_States
- Hleyhel M., Goujon S., Delteil C. et al. Risk of cancer in children exposed to didanosine in utero. AIDS 2016;30(8):1245–56. URL: https://journals.lww.com/aidsonline/abstract/2016/05150/risk_of_cancer_in_children_exposed_to_didanosine.10.aspx
- Chen X., Wang C., Guan S. et al. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines. Oncol Rep 2016;36(1):239–46. doi: 10.3892/or.2016.4819
- Zhou F.X., Liao Z.K., Dai J. et al. Radiosensitization effect of zidovudine on human malignant glioma cells. Biochem Biophys Res Commun 2007;354(2):351–6. doi: 10.1016/j.bbrc.2006.12.180
- Humer J., Ferko B., Waltenberger A. et al. Azidothymidine inhibits melanoma cell growth in vitro and in vivo. Melanoma Res 2008;18(5):314–21. URL: https://journals.lww.com/melanomaresearch/abstract/2008/10000/azidothymidine_inhibits_melanoma_cell_growth_in.2.aspx
- Brown T., Sigurdson E., Rogatko A. et al. Telomerase inhibition using azidothymidine in the HT-29 colon cancer cell line. Ann Surg Oncol 2003;10(8):910–5. doi: 10.1245/aso.2003.03.032
- Schneider M.A., Buzdin A.A., Weber A. et al. Combination of antiretroviral drugs zidovudine and efavirenz impairs tumor growths in a mouse model of cancer. Viruses 2021;13(12):2396. doi: 10.3390/v13122396
- Giovinazzo A., Balestrieri E., Petrone V. et al. The concomitant expression of human endogenous retroviruses and embryonic genes in cancer cells under microenvironmental changes is a potential target for antiretroviral drugs. Cancer Microenviron 2019;12(2–3): 105–18. doi: 10.1007/s12307-019-00231-3
- Novototskaya-Vlasova K.A., Neznanov N.S., Molodtsov I. et al. Inflammatory response to retrotransposons drives tumor drug resistance that can be prevented by reverse transcriptase inhibitors. Proc Natl Acad Sci USA 2022;119(49):e2213146119. doi: 10.1073/pnas.2213146119
- Zhang S., Li N., Sheng Y. et al. Hepatitis B virus induces sorafenib resistance in liver cancer via upregulation of cIAP2 expression. Infect Agent Cancer 2021;16(1):20. doi: 10.1186/s13027-021-00359-2
- Zhang Y., Zhang R., Ding X. et al. FNC efficiently inhibits mantle cell lymphoma growth. PLoS One 2017;12(3):e0174112. URL: https://journals.plos.org/plosone/article/figures?id=10.1371/journal.pone.0174112
- Zhang Y., Wang C.P., Ding X.X. et al. FNC, a novel nucleoside analogue, blocks invasion of aggressive non-Hodgkin lymphoma cell lines via inhibition of the Wnt/β-catenin signaling pathway. Asian Pac J Cancer Prev 2014;15(16):6829–35. doi: 10.7314/apjcp.2014.15.16.6829
- Jing X., Niu S., Liang Y. et al. FNC inhibits non-small cell lung cancer by activating the mitochondrial apoptosis pathway. Genes Genomics 2022;44(1):123–31. doi: 10.1007/s13258-021-01179-9
- Wang Q., Liu X., Wang Q. et al. FNC, a novel nucleoside analogue inhibits cell proliferation and tumor growth in a variety of human cancer cells. Biochem Pharmacol 2011;81(7):848–55. doi: 10.1016/j.bcp.2011.01.001
- Rossi A., Russo G., Puca A. et al. The antiretroviral nucleoside analogue abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. Int J Cancer 2009;125(1):235–43. doi: 10.1002/ijc.24331
- Hecht M., Erber S., Harrer T. et al. Efavirenz has the highest anti-proliferative effect of non-nucleoside reverse transcriptase inhibitors against pancreatic cancer cells. PLoS One 2015;10(6):e0130277. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130277
- Sciamanna I., Landriscina M., Pittoggi C. et al. Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 2005;24(24):3923–31. doi: 10.1038/sj.onc.1208562
- Dong J.J., Zhou Y., Liu Y.T. et al. In vitro evaluation of the therapeutic potential of nevirapine in treatment of human thyroid anaplastic carcinoma. Mol Cell Endocrinol 2013;370(1–2):113–8. doi: 10.1016/j.mce.2013.02.001
- Shang H., Zhao J., Yao J. et al. Nevirapine inhibits migration and invasion in dedifferentiated thyroid cancer cells. Thorac Cancer 2019;10(12):2243–52. doi: 10.1111/1759-7714.13211
- Stefanidis K., Loutradis D., Vassiliou L.V. et al. Nevirapine induces growth arrest and premature senescence in human cervical carcinoma cells. Gynecol Oncol 2008;111(2):344–9. doi: 10.1016/j.ygyno.2008.08.006
- Zhang R., Zhang F., Sun Z. et al. LINE-1 retrotransposition promotes the development and progression of lung squamous cell carcinoma by disrupting the tumor-suppressor gene FGGY. Cancer Res 2019;79(17):4453–65. doi: 10.1158/0008-5472.CAN-19-0076
- Patnala R., Lee S.H., Dahlstrom J.E. et al. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells. Breast Cancer Res Treat 2014;143(2):239–53. doi: 10.1007/s10549-013-2812-7
- Hecht M., Harrer T., Büttner M. et al. Cytotoxic effect of efavirenz is selective against cancer cells and associated with the cannabinoid system. AIDS 2013;27(13):2031–40. URL: https://pubmed.ncbi.nlm.nih.gov/23612009/
- Sciamanna I., Gualtieri A., Cossetti C. et al. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines. Oncotarget 2013;4(12):2271–87. doi: 10.18632/oncotarget.1403
- Chiou P.T., Ohms S., Board P.G. et al. Efavirenz as a potential drug for the treatment of triple-negative breast cancers. Clin Transl Oncol 2021;23(2):353–63. doi: 10.1007/s12094-020-02424-5
- Marima R., Hull R., Dlamini Z. et al. Efavirenz induces DNA damage response pathway in lung cancer. Oncotarget 2020;11(41):3737–48. doi: 10.18632/oncotarget.27725
- Brüning A., Jückstock J., Kost B. et al. Induction of DNA damage and apoptosis in human leukemia cells by efavirenz. Oncol Rep 2017;37(1):617–21. doi: 10.3892/or.2016.5243
- Bellisai C., Sciamanna I., Rovella P. et al. Reverse transcriptase inhibitors promote the remodelling of nuclear architecture and induce autophagy in prostate cancer cells. Cancer Lett 2020;478:133–45. doi: 10.1016/j.canlet.2020.02.029
- Ly T.T.G., Yun J., Ha J.S. et al. Inhibitory effect of etravirine, a non-nucleoside reverse transcriptase inhibitor, via anterior gradient protein 2 homolog degradation against ovarian cancer metastasis. Int J Mol Sci 2022;23(2):944. doi: 10.3390/ijms23020944
- Islam S., Rahaman M.H., Yu M. et al. Anti-leukaemic activity of rilpivirine is mediated by Aurora A kinase inhibition. Cancers (Basel) 2023;15(4):1044. doi: 10.3390/cancers15041044
- Weinrich S.L., Pruzan R., Ma L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997;17(4):498–502. doi: 10.1038/ng1297-498
- Calado R., Young N. Telomeres in disease. F1000 Med Rep 2012;4:8. doi: 10.3410/M4-8
- Wang H., Zhou J., He Q. et al. Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer. Mol Med Rep 2017;15(6):4055–60. doi: 10.3892/mmr.2017.6549
- Kyo S., Takakura M., Fujiwara T. et al. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 2008;99(8):1528–38. doi: 10.1111/j.1349-7006.2008.00878.x
- Jin R.R., Chao R., Xi Y.M. et al. Effects of AZT on leukemia cell line KG-1a proliferation and telomerase activity. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2012;20(2):277–81.
- Palamarchuk A.I., Kovalenko E.I., Streltsova M.A. Multiple actions of telomerase reverse transcriptase in cell death regulation. Biomedicines 2023;11(4):1091. doi: 10.3390/biomedicines11041091
- Hsieh Y., Tseng J.J. Azidothymidine (AZT) inhibits proliferation of human ovarian cancer cells by regulating cell cycle progression. Anticancer Res 2020;40(10):5517–27. doi: 10.21873/anticanres.14564
- Bondarev I.E., Khavinson V.K. Suppression of alternative telomere lengthening in cancer cells with reverse transcriptase inhibitors. Adv Gerontol 2016;29(2):218–21. doi: 10.1134/s2079057016040020
Дополнительные файлы


