A modern view of the role of genetic factors in the etiopathogenesis of breast cancer
https://doi.org/10.17650/2313-805X-2024-11-2-50-62
Abstract
The aim of this review is to summarize current understandings of the genetic risk factors for the development of breast cancer (BC), evaluate the role of germline mutations and single nucleotide polymorphisms associated with the disease, based on genome-wide association studies (GWAS) and other associative studies.
The search for relevant sources was conducted in PubMed, Medline, Cochrane Library, eLIBRARY, and the NHGRI-EBI Catalog of GWAS. The analysis includes works published from January 2007 to December 2022. A total of 197 sources focused on the role of genetic factors in the development of BC were found. Search queries included data on associations of various molecular-genetic markers – germline mutations, and single nucleotide polymorphisms – with the formation of BC. From this body of work, 45 studies were included in the current review. The inclusion criterion for the analysis was
the presence of GWAS data and associative studies conducted among patients with representative samples with the necessary power. Additionally, results characterizing the clinical-pathological significance (association with molecular subtypes of BC, therapy features, disease prognosis) of BC genetic factors were evaluated. Excluded from the analysis were data from associative studies of candidate genes for malignant breast neoplasms that are morphologically not carcinomas, performed on small (non-representative) patient samples and control groups. Mutations in genes with high and moderate penetrance (BRCA1/2, CHEK2, PALB2, etc.) are associated with the onset of BC in 5 % of cases. Among families with two or more members affected by BC, their share reaches only 30–40 %. GWAS data revealed the role of more than 180 polymorphic loci associated with BC, which determine a heritability rate of about 18 %. According to twin studies, this rate is 1.7 times higher, reaching 31 %. Meanwhile, the contribution of environmental factors is no more than 16 %. The proportion of unidentified hereditary factors in BC formation is about 8 %. However, contemporary studies of associations of various candidate genes (ESR1/2, IGF1, EGFR, VEGF, TNFα, MMPs, etc.), whose signaling pathways regulate BC tumor progression, show their involvement in carcinogenesis. Thus, the unknown heritability in BC formation may reach 40 %. The proportion of germline mutations in major BC predisposition genes in the population is low. Genetic variations within the same gene (e.g., BRCA1) show ethnic or territorial diversity. Nevertheless, a significant portion of BC heritability is determined by various candidate genes, whose role in forming individual BC risk is demonstrated by GWAS. Substantial evidence on the involvement of key carcinogenesis-regulating genes in BC development is being accumulated. Each of the three considered groups of genetic factors has important clinical-pathological significance and can influence the course and prognosis of the disease.
Keywords
About the Authors
N. V. PavlovaRussian Federation
308010; 1 Kuibysheva St.; 308015; 85 Pobedy St.; Belgorod
S. S. Dyomin
Russian Federation
Sergey Sergeevich Demin
308010; 1 Kuibysheva St.; 308015; 85 Pobedy St.; Belgorod
M. I. Churnosov
Russian Federation
308015; 85 Pobedy St.; Belgorod
I. V. Ponomarenko
Russian Federation
308015; 85 Pobedy St.; Belgorod
References
1. Gradishar W.J., Anderson B.O., Blair S.L. et al. Breast cancer version 3.2014. J Natl Compr Canc Netw 2014;12(4):542–90. DOI: 10.6004/jnccn.2014.0058
2. Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI: 10.3322/caac.21660
3. Ed. by A.D. Kaprin, V.V. Starinskii, G.V. Petrova. Malignant neoplasms in Russia in 2018. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2019. 250 p. (In Russ.).
4. Pasenov K.N. Features of associations of SHBG-related genes with breast cancer in women, depending on the presence of hereditary burden and mutations in the BRCA1/CHEK2 genes. Nauchnye rezul’taty biomedicintskikh issledovaniy = Research Results in Biomedicine 2024; 10(1):69–88. (In Russ.). DOI: 10.18413/2658-6533-2024-10-1-0-4
5. Healthcare in Russia. 2021: stat. sat. Rosstat, 2021. 171 p. (In Russ.).
6. Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021. DOI: 10.1002/ijc.33588
7. Lilyquist J., Ruddy K.J., Vachon C.M., Couch F.J. Common genetic variation and breast cancer risk-past, present, and future. Cancer Epidemiol Biomarkers Prev 2018;27(4):380–94. DOI: 10.1158/1055-9965.EPI-17-1144
8. Möller S., Mucci L.A., Harris J.R. et al. The heritability of breast cancer among women in the Nordic twin study of cancer. Cancer Epidemiol Biomarkers Prev 2016;25(1):145–50. DOI: 10.1158/1055-9965.EPI-15-0913
9. Shiovitz S., Korde L.A. Genetics of breast cancer: a topic in evolution. Ann Oncol 2015;26(7):1291–9. DOI: 10.1093/annonc/mdv022
10. Valova Ya.V., Mingazheva E.T., Prokof’eva D.S. et al. Ovarian cancer as part of hereditary oncological syndromes (review). Nauchnye rezul’taty biomedicintskikh issledovaniy = Research Results in Biomedicine 2021;7(4):330–62. (In Russ.). DOI: 10.18413/2658-6533-2021-7-4-0-2
11. Shen L., Zhang S., Wang K., Wang X. Familial breast cancer: disease related gene mutations and screening strategies for chinese population. Front Oncol 2021;11:740227. DOI: 10.3389/fonc.2021.740227
12. Rebbeck T.R., Mitra N., Wan F. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 2015;313(13):1347–61. DOI: 10.1001/jama.2014.5985
13. Rebbeck T.R., Friebel T.M., Friedman E. et al. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat 2018;39(5):593–620. DOI: 10.1002/humu.23406
14. Tung N., Lin N.U., Kidd J. et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 2016;34(13):1460–8. DOI: 10.1200/JCO.2015.65.0747
15. Imyanitov E.N. Hereditary breast cancer. Prakticheskaya onkologiya = Practical Oncology 2010:11(4);258–66. (In Russ.).
16. Lyubchenko L.N., Bateneva E.I., Abramov I.S. et al. Hereditary breast and ovarian cancer. Zlokachestvennye opukholi = Malignant Tumors 2013;2(6):53–60. (In Russ.).
17. Inagaki-Kawata Y., Yoshida K., Kawaguchi-Sakita N. et al. Genetic and clinical landscape of breast cancers with germline BRCA1/2 variants. Commun Biol 2020;3(1):578. DOI: 10.1038/s42003-020-01301-9
18. Sokolenko A.P., Volkov N.M., Preobrazhenskaya E.V. et al. Evidence for a pathogenic role of BRCA1 L1705P and W1837X germ-line mutations. Mol Biol Rep 2016;43(5):335–8. DOI: 10.1007/s11033-016-3968-0
19. Bermisheva M.A., Bogdanova N.V., Giljazova I.R. et al. Ethnic features of genetic susceptibility to breast cancer. Genetica = Genetics 2018;54(2):233–42. (In Russ.). DOI: 10.7868/S0016675818020042
20. Bermisheva M.A., Zinnatullina G.F., Giliazova I.R. et al. The prevalence of the c.5161C>T mutation of the BRCA1 gene in patients with cancer from the Republic of Bashkortostan. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2021;8(4): 84–93. (In Russ.). URL: https://umo.abvpress.ru/jour/article/view/393
21. GWAS Catalog. The NHGRI-EBI Catalog of human genome-wide association studies. Available at: https://www.ebi.ac.uk/gwas/search?query=breast% 20carcinoma.
22. Easton D.F., Pooley K.A., Dunning A.M. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007;28;447(7148):1087–93. DOI: 10.1038/nature05887
23. Turnbull C., Ahmed S., Morrison J. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 2010;42(6):504–7. DOI: 10.1038/ng.586
24. Sehrawat B., Sridharan M., Ghosh S. et al. Potential novel candidate polymorphisms identified in genome-wide association study for breast cancer susceptibility. Hum Genet 2011;130(4):529–37. DOI: 10.1007/s00439-011-0973-1
25. Long J., Cai Q., Sung H. et al. Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer. PLoS Genet 2012;8(2):e1002532. DOI: 10.1371/journal.pgen.1002532
26. Han M.R., Long J., Choi J.Y. et al. Genome-wide association study in East Asians identifies two novel breast cancer susceptibility loci. Hum Mol Genet 2016;25(15):3361–71. DOI: 10.1093/hmg/ddw164
27. Cai Q., Zhang B., Sung H. et al. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nat Genet 2014;46(8):886–90. DOI: 10.1038/ng.3041
28. Michailidou K., Lindström S., Dennis J. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017;551(7678):92–4. DOI: 10.1038/nature24284
29. Sun T., Lian R., Liang X., Sun D. Association between ESR1 XBAI and breast cancer susceptibility : a systematic review and meta-analysis. Clin Invest Med 2022;45(1):E21–34. DOI: 10.25011/cim.v45i1.37842
30. Zheng Q., Ye J., Wu H. et al. Association between mitogen-activated protein kinase kinase kinase 1 polymorphisms and breast cancer susceptibility: a meta-analysis of 20 case-control studies. PLoS One 2014;9(3):e90771. DOI: 10.1371/journal.pone.0090771
31. Chen J., Xiao Q., Li X. et al. The correlation of leukocyte-specific protein 1 (LSP1) rs3817198(T>C) polymorphism with breast cancer: a meta-analysis. Medicine (Baltimore) 2022;101(45):e31548. DOI: 10.1097/MD.0000000000031548
32. Shi J., Aronson K.J., Grundy A. et al. Polymorphisms of insulin-like growth factor 1 pathway genes and breast cancer risk. Front Oncol 2016;6:136. DOI: 10.3389/fonc.2016.00136
33. Malivanova T.F., Alferova E.V., Ostashkin A.S. et al. The overall survival rate of breast cancer patients depends on a combination of polymorphisms of the tumor necrosis factor gene and HLA haplotypes. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology 2020;38(1):40–8. (In Russ.).
34. Li Z., Wang Y., Liu C. et al. Association between VEGF single nucleotide polymorphism and breast cancer in the Northern China Han population. Breast Cancer Res Treat 2021;186(1):149–56. DOI: 10.1007/s10549-020-06024-3
35. Shevchenko A.V., Konenkov V.I., Garbukov E.Yu., Stakheeva M.N. The association of polymorphism in the promoter regions of metalloproteinase genes (MMP 2, MMP3, MMP 9) with variants of the clinical course of breast cancer in Russian women. Voprosy onkologii = Oncology Issues 2014;60(5):630–5. (In Russ.).
36. Zhang X., Jin G., Li J., Zhang L. Association between four MMP-9 polymorphisms and breast cancer risk: a meta-analysis. Med Sci Monit 2015;21:1115–23. DOI: 10.12659/MSM.893890
37. Pavlova N., Demin S., Churnosov M. et al. Matrix metalloproteinase gene polymorphisms are associated with breast cancer in the caucasian women of Russia. Int J Mol Sci 2022;23(20): 12638. DOI: 10.3390/ijms232012638
38. Pavlova N., Demin S., Churnosov M. et al. The modifying effect of obesity on the association of matrix metalloproteinase gene polymorphisms with breast cancer risk. Biomedicines 2022;10(10):2617. DOI: 10.3390/biomedicines10102617
39. Pavlova N.V., Orlova V.S., Batlutskaya I.V. et al. The role of highly penetrant mutations in BRCA1 and CHEK2 genes in the pattern of associations of matrix metalloproteinase gene polymorphisms with breast cancer. Nauchnye rezul’taty biomedicintskikh issledovaniy = Research Results in Biomedicine 2022;8(2):180–97. (In Russ.). DOI: 10.18413/2658-6533-2022-8-2-0-4
40. Purrington K.S., Slager S., Eccles D. et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 2014;35(5): 1012–9. DOI: 10.1093/carcin/bgt404
41. Huo D., Feng Y., Haddad S. et al. Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel suscep-tibility locus for oestrogen receptor negative breast cancer. Hum Mol Genet 2016;25(21):4835–46. DOI: 10.1093/hmg/ddw305
42. Cen Y.L., Qi M.L., Li H.G. et al. Associations of polymorphisms in the genes of FGFR2, FGF1, and RBFOX2 with breast cancer risk by estrogen/progesterone receptor status. Mol Carcinog 2013;52 Suppl 1:E52–9. DOI: 10.1002/mc.21979
43. Bartnykaitė A., Savukaitytė A., Bekampytė J. et al. The role of matrix metalloproteinase single-nucleotide polymorphisms in the clinicopathological properties of breast cancer. Biomedicines 2022;10(8):1891. DOI: 10.3390/biomedicines10081891
44. Morra A., Escala-Garcia M., Beesley J. et al. Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Res 2021;23(1):86. DOI: 10.1186/s13058-021-01450-7
45. Wang Y., Wu Z., Zhou L. et al. The impact of EGFR gene polymorphisms on the response and toxicity derived from neoadjuvant chemotherapy for breast cancer. Gland Surg 2020;9(4):925–35. DOI: 10.21037/gs-20-330
Review
For citations:
Pavlova N.V., Dyomin S.S., Churnosov M.I., Ponomarenko I.V. A modern view of the role of genetic factors in the etiopathogenesis of breast cancer. Advances in Molecular Oncology. 2024;11(2):50-62. (In Russ.) https://doi.org/10.17650/2313-805X-2024-11-2-50-62