Preview

Advances in Molecular Oncology

Advanced search

Germline and somatic alterations in NBN and their putative impact on the pathogenesis of malignant neoplasms

https://doi.org/10.17650/2313-805X-2024-11-3-8-23

Abstract

Disruption of mechanisms that maintain genome stability is an essential factor of tumor progression. Accordingly, predisposition to the development of neoplasms is often associated with germline mutations in genes involved in DNA damage detection and repair. At the same time, impairment of DNA repair systems may be a predictor of antitumor treatment efficacy while overexpression of genes involved in DNA repair is a frequent event in various types of malignancies that can lead to development of tumor cells’ resistance to chemo- and radiotherapy. NBN (nibrin) gene encodes the subunit of the MRN complex which acts as a sensor of double-strand DNA breaks and participates in their repair by homologous recombination. Germline variants in NBN which are associated with increased risk of tumor development are generally represented by frameshift mutations that lead to the synthesis of truncated protein as well as by nonsense and some missense mutations which occur in functionally significant domains. These germline mutations result in partial loss of nibrin function and in increased frequency of spontaneous and induced chromosomal aberrations in the cells of the carriers. On the contrary, amplification of NBN locus is a predominant type of somatic mutations affecting this gene, which indicates a dual role of NBN protein in tumor progression. The results of several studies demonstrate the influence of NBN expression level and its mutational status on anti-tumor drug resistance in particular types of tumor cells and on the survival rate of patients. These data indicate that an in-depth study of different variants and their functional significance is necessary since NBN status may be essential for the choice of treatment tactics for some types of tumors.

About the Authors

O. M. Krivtsova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Olga Mikhailovna

4 Kashirskoe Shosse, Moscow 115522



D. D. Ozerova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



N. L. Lazarevich
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Lomonosov Moscow State University
Russian Federation

24 Kashirskoe Shosse, Moscow 115522

GSP-1, Leninskie Gory, Moscow 119991



References

1. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011;144(5):646–74. DOI: 10.1016/j.cell.2011.02.013

2. The ICGC/TCGA pan-cancer analysis of whole genomes consortium. Pan-cancer analysis of whole genomes. Nature 2020;578(7793):82–93. DOI: 10.1038/s41586-020-1969-6

3. McFarland C.D., Yaglom J.A., Wojtkowiak J.W. et al. The damaging effect of passenger mutations on cancer progression. Cancer Res 2017;77(18):4763–72. DOI: 10.1158/0008-5472.CAN-15-3283-T

4. Li Q., Qian W., Zhang Y. et al. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023;8(1):338. DOI: 10.1038/s41392-023-01548-8

5. Toh M., Ngeow J. Homologous recombination deficiency: cancer predispositions and treatment implications. Oncologist 2021;26(9):e1526–37. DOI: 10.1002/onco.13829

6. Bertelsen B., Tuxen I.V., Yde C.W. et al. High frequency of pathogenic germline variants within homologous recombination repair in patients with advanced cancer. NPJ Genom Med 2019;4:13. DOI: 10.1038/s41525-019-0087-6

7. Gao P., Ma N., Li M. et al. Functional variants in NBS1 and cancer risk: evidence from a meta-analysis of 60 publications with 111 individual studies. Mutagenesis 2013;28(6):683–97. DOI: 10.1093/mutage/get048

8. Otahalova B., Volkova Z., Soukupova J. et al. Importance of germline and somatic alterations in human MRE11, RAD50, and NBN genes coding for MRN complex. Int J Mol Sci 2023;24(6):5612. DOI: 10.3390/ijms24065612

9. Takai K., Sakamoto S., Sakai T. et al. A potential link between alternative splicing of the NBS1 gene and DNA damage/environmental stress. Radiat Res 2008;170(1):33–40. DOI: 10.1667/RR1191.1

10. Bian L., Meng Y., Zhang M., Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer 2019;18(1):169. DOI: 10.1186/s12943-019-1100-5

11. Hari F.J., Spycher C., Jungmichel S. et al. A divalent FHA/BRCTbinding mechanism couples the MRE11-RAD50-NBS1 complex to damaged chromatin. EMBO Rep 2010;11(5):387–92. DOI: 10.1038/embor.2010.30

12. Stiff T., Cerosaletti K., Concannon P. et al. Replication independent ATR signalling leads to G2/M arrest requiring Nbs1, 53BP1 and MDC1. Hum Mol Genet 2008;17(20):3247–53. DOI: 10.1093/hmg/ddn220

13. Kim J.H., Grosbart M., Anand R. et al. The Mre11-Nbs1 interface is essential for viability and tumor suppression. Cell Rep 2017;18(2):496–507. DOI: 10.1016/j.celrep.2016.12.035

14. Rai R., Hu C., Broton C. et al. NBS1 phosphorylation status dictates repair choice of dysfunctional telomeres. Mol Cell 2017;65(5):801–17.e4. DOI: 10.1016/j.molcel.2017.01.016

15. Tseng S.F., Chang C.Y., Wu K.J., Teng S.C. Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1. J Biol Chem 2005;280(47):39594–600. DOI: 10.1074/jbc.M508425200

16. Varon R., Demuth I., Chrzanowska K.H. Nijmegen breakage syndrome. In: GeneReviews. Ed. by M.P. Adam, J. Feldman, G.M. Mirzaa et al. Seattle (WA): University of Washington, Seattle, 1999. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1176/.

17. Sharapova S.O., Pashchenko O.E., Bondarenko A.V. et al. Geographical distribution, incidence, malignancies, and outcome of 136 Eastern slavic patients with Nijmegen Breakage Syndrome and NBN founder variant c.657_661del5. Front Immunol 2021;11:602482. DOI: 10.3389/fimmu.2020.602482

18. Cilli D., Mirasole C., Pennisi R. et al. Identification of the interactors of human nibrin (NBN) and of its 26 kDa and 70 kDa fragments arising from the NBN 657del5 founder mutation. PLoS One 2014;9(12):e114651. DOI: 10.1371/journal.pone.0114651

19. Maser R.S., Zinkel R., Petrini J.H. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat Genet 2001;27(4):417–21. DOI: 10.1038/86920

20. Lins S., Kim R., Krüger L. et al. Clinical variability and expression of the NBN c.657del5 allele in Nijmegen Breakage Syndrome. Gene 2009;447(1):12–7. DOI: 10.1016/j.gene.2009.07.013

21. Belhadj S., Khurram A., Bandlamudi C. et al. NBN pathogenic germline variants are associated with pan-cancer susceptibility and in vitro DNA damage response defects. Clin Cancer Res 2023;29(2):422–31. DOI: 10.1158/1078-0432.CCR-22-1703

22. Dzikiewicz-Krawczyk A., Mosor M., Januszkiewicz D., Nowak J. Impact of heterozygous c.657-661del, p.I171V and p.R215W mutations in NBN on nibrin functions. Mutagenesis 2012;27(3):337–43. DOI: 10.1093/mutage/ger084

23. Nowak J., Świątek-Kościelna B., Kałużna E.M. et al. Effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with NBN mutations. Arch Med Sci 2017;13(2):283–92. DOI: 10.5114/aoms.2017.65452

24. Yamamoto Y., Miyamoto M., Tatsuda D. et al. A rare polymorphic variant of NBS1 reduces DNA repair activity and elevates chromosomal instability. Cancer Res 2014;74(14):3707–15. DOI: 10.1158/0008-5472.CAN-13-3037

25. Sherry S.T., Ward M.H., Kholodov M. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29(1):308–11. DOI: 10.1093/nar/29.1.308

26. Landrum M.J., Lee J.M., Riley G.R. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014;42:D980–5. DOI: 10.1093/nar/gkt1113

27. Cerosaletti K.M., Concannon P. Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem 2003;278(24):21944–51. DOI: 10.1074/jbc.M211689200

28. Tomioka K., Miyamoto T., Akutsu S.N. et al. NBS1 I171V variant underlies individual differences in chromosomal radiosensitivity within human populations. Sci Rep 2021;11(1):19661. DOI: 10.1038/s41598-021-98673-7

29. Warcoin M., Lespinasse J., Despouy G. et al. Fertility defects revealing germline biallelic nonsense NBN mutations. Hum Mutat 2009;30(3):424–30. DOI: 10.1002/humu.20904

30. Varon R., Vissinga C., Platzer M. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998;93(3):467–76. DOI: 10.1016/s0092-8674(00)81174-5

31. Gass J., Jackson J., Macklin S. et al. A case of contralateral breast cancer and skin cancer associated with NBN heterozygous pathogenic variant c.698_701delAACA. Fam Cancer 2017;16(4):551–3. DOI: 10.1007/s10689-017-9982-0

32. Ramus S.J., Song H., Dicks E. et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 2015;107(11):djv214. DOI: 10.1093/jnci/djv214

33. Wu Y., Yu H., Li S. et al. Rare germline pathogenic mutations of DNA repair genes are most strongly associated with grade group 5 prostate cancer. Eur Urol Oncol 2020;3(2):224–30. DOI: 10.1016/j.euo.2019.12.003

34. Susswein L.R., Marshall M.L., Nusbaum R. et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med 2016;18(8):823–32. DOI: 10.1038/gim.2015.166

35. Nakanishi K., Taniguchi T., Ranganathan V. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 2002;4(12):913–20. DOI: 10.1038/ncb879

36. Desmond A., Kurian A.W., Gabree M. et al. Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol 2015;1(7):943–51. DOI: 10.1001/jamaoncol.2015.2690

37. Gao J., Aksoy B.A., Dogrusoz U. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6(269):pl1. DOI: 10.1126/scisignal.2004088

38. Zehir A., Benayed R., Shah R.H. et al. Mutational landscape of meta-static cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23(6):703–13. DOI: 10.1038/nm.4333

39. Wu Z., Li S., Tang X. et al. Copy number amplification of DNA damage repair pathways potentiates therapeutic resistance in cancer. Theranostics 2020;10(9):3939–51. DOI: 10.7150/thno.39341

40. Gan M., Tai Z., Yu Y. et al. Next-generation sequencing shows the genomic features of ovarian clear cell cancer and compares the genetic architectures of high-grade serous ovarian cancer and clear cell carcinoma in ovarian and endometrial tissues. Peer J 2023;11:e14653. DOI: 10.7717/peerj.14653

41. Berlin A., Lalonde E., Sykes J. et al. NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer. Oncotarget 2014;5(22):11081–90. DOI: 10.18632/oncotarget.2404

42. Shi Z., Chen B., Han X. et al. Genomic and molecular landscape of homologous recombination deficiency across multiple cancer types. Sci Rep 2023;13(1):8899. DOI: 10.1038/s41598-023-35092-w

43. Goldman M.J., Craft B., Hastie M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 2020;38(6):675–8. DOI: 10.1038/s41587-020-0546-8

44. Cancer Genome Atlas Research Network, Weinstein J.N., Collisson E.A. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013;45(10):1113–20. DOI: 10.1038/ng.2764

45. Wang M., Chen S., Ao D. Targeting DNA repair pathway in cancer: mechanisms and clinical application. MedComm (2020) 2021;2(4):654–91. DOI: 10.1002/mco2.103

46. Stewart M.D., Merino Vega D., Arend R.C. et al. Homologous recombination deficiency: concepts, definitions, and assays. Oncologist 2022;27(3):167–74. DOI: 10.1093/oncolo/oyab053

47. Huang R.X., Zhou P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020;5(1):60. DOI: 10.1038/s41392-020-0150-x

48. Zhong A., Cheng C.S., Lu R.Q., Guo L. Suppression of NBS1 upregulates cyclinb to induce olaparib sensitivity in ovarian cancer. Technol Cancer Res Treat 2024;23:15330338231212085. DOI: 10.1177/15330338231212085

49. Risdon E.N., Chau C.H., Price D.K. et al. PARP inhibitors and prostate cancer: to infinity and beyond BRCA. Oncologist 2021;26(1):e115–29. DOI: 10.1634/theoncologist.2020-0697

50. McCabe N., Turner N.C., Lord C.J. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 2006;66(16):8109–15. DOI: 10.1158/0008-5472.CAN-06-0140

51. Eich M., Roos W.P., Dianov G.L. et al. Nijmegen breakage syndrome protein (NBN) causes resistance to methylating anticancer drugs such as temozolomide. Mol Pharmacol 2010;78(5):943–51. DOI: 10.1124/mol.110.066076


Review

For citations:


Krivtsova O.M., Ozerova D.D., Lazarevich N.L. Germline and somatic alterations in NBN and their putative impact on the pathogenesis of malignant neoplasms. Advances in Molecular Oncology. 2024;11(3):8-23. (In Russ.) https://doi.org/10.17650/2313-805X-2024-11-3-8-23

Views: 234


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)