Structural alterations of the EGFR gene in glioblastoma samples as a prognostic factor and molecular target for therapy
- Authors: Varachev V.O.1, Susova O.Y.2, Mitrofanov A.A.2, Krasnov G.S.1, Naskhletashvili D.R.2, Ammour Y.I.1,3, Bezhanova S.D.2, Sevyan N.V.2, Prozorenko E.V.2, Bekyashev A.K.2, Nasedkina T.V.1
-
Affiliations:
- V.A. Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
- I.I. Mechnikov Research Institute of Vaccines and Sera
- Issue: Vol 11, No 3 (2024)
- Pages: 68-78
- Section: RESEARCH ARTICLES
- Published: 11.10.2024
- URL: https://umo.abvpress.ru/jour/article/view/709
- DOI: https://doi.org/10.17650/2313-805X-2024-11-3-68-78
- ID: 709
Cite item
Full Text
Abstract
Introduction. Epidermal growth factor receptor (EGFR) is a transmembrane protein of the receptor tyrosine kinase family that is activated in various cancers (non-small cell lung cancer, colorectal cancer, head and neck tumors). In glial brain tumors, increased EGFR expression levels are characteristic of the most aggressive subtype, glioblastoma. Frequent structural changes of EGFR in glioblastoma are amplification of the chromosome region where the EGFR gene is located, point mutations, as well as deletion of exons 2–7 of the EGFR gene leading to the formation of EGFRvIII transcript.
Aim. To determine structural changes of the EGFR gene (point mutations and amplification of the EGFR gene, EGFRvIII transcript) in tumor samples using different methods and to evaluate their potential clinical significance.
Materials and methods. The study included 75 patients with brain gliomas (70 of them glioblastoma) aged 34 to 78 years (mean age 56 years). DNA and RNA isolation was performed from fresh frozen tumor tissue, as well as from peripheral blood leukocytes. EGFR gene mutations were determined by next-generation sequencing (NGS), and β allele frequency (BAF) comparative analysis (normal-tumor) was performed to determine the copy number of chromosome 7 regions. Quantitative polymerase chain reaction was used to confirm the EGFR gene amplification in tumor samples, and reverse transcription-PCR was used to detect EGFRvIII variant.
Results. The NGS method revealed 11/70 (16 %) mutations in coding regions of EGFR gene in glioblastoma samples, the EGFR gene amplification was detected in 26/70 (37 %) cases; no structural changes of the EGFR gene were detected in 5 glioma samples (astrocytoma, oligodendroglioma). All cases of EGFR gene amplification detected by NGS were confirmed by quantitative polymerase chain reaction. To search for EGFRvIII transcript, 31 tumor RNA samples were examined, of which EGFR amplification was present in 12 samples. EGFRvIII transcript was detected only in samples with EGFR gene amplification – 4/12 (33 %). To assess the clinical significance of structural gene alterations, the frequency of occurrence in primary and recurrent glioblastoma samples was compared.
Conclusion. The NGS method allows to detect both point mutations and amplification of the EGFR gene. The EGFR gene amplification was associated with EGFRvIII mutation in 33 % of cases. No statistically significant differences in the frequency of structural changes in the EGFR gene between primary and relapsed glioblastomas were found.
About the authors
V. O. Varachev
V.A. Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0002-3567-3761
32 Vavilova St., Moscow 119991
Russian FederationO. Yu. Susova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-8192-7913
24 Kashirskoe Shosse, Moscow 115522
Russian FederationA. A. Mitrofanov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-4125-7342
24 Kashirskoe Shosse, Moscow 115522
Russian FederationG. S. Krasnov
V.A. Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0002-6493-8378
32 Vavilova St., Moscow 119991
Russian FederationD. R. Naskhletashvili
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-4218-9652
24 Kashirskoe Shosse, Moscow 115522
Russian FederationYu. I. Ammour
V.A. Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences; I.I. Mechnikov Research Institute of Vaccines and Sera
Email: fake@neicon.ru
ORCID iD: 0000-0003-0223-5738
32 Vavilova St., Moscow 119991
5А Malyy Kazennyy Pereulok, Moscow 105064
Russian FederationS. D. Bezhanova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-7336-9210
24 Kashirskoe Shosse, Moscow 115522
Russian FederationN. V. Sevyan
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-5841-7480
24 Kashirskoe Shosse, Moscow 115522
Russian FederationE. V. Prozorenko
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-8880-1758
24 Kashirskoe Shosse, Moscow 115522
Russian FederationA. Kh. Bekyashev
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-4160-9598
24 Kashirskoe Shosse, Moscow 115522
Russian FederationT. V. Nasedkina
V.A. Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Author for correspondence.
Email: tanased06@rambler.ru
ORCID iD: 0000-0002-2642-4202
Tatyana Vasilyevna Nasedkina
32 Vavilova St., Moscow 119991
Russian FederationReferences
- Herbst R.S. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59(2):21–6. doi: 10.1016/j.ijrobp.2003.11.041
- Hynes N.E., Lane H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5(5):341–54. doi: 10.1038/nrc1609
- Jones S., Rappoport J.Z. Interdependent epidermal growth factor receptor signalling and trafficking. Int J Biochem Cell Biol 2014;51:23–8. doi: 10.1016/j.biocel.2014.03.014
- Sigismund S., Avanzato D., Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018;12(1):3–20. doi: 10.1002/1878-0261.12155
- Dreux A.C., Lamb D.J., Modjtahedi H., Ferns G.A. The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 2006;186(1):38–53. doi: 10.1016/j.atherosclerosis.2005.06.038
- Saadeh F.S., Mahfouz R., Assi H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int J Biol Markers 2018;33(1): 22–32. doi: 10.5301/ijbm.5000301
- Brennan C.W., Verhaak R.G., McKenna A. et al. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013;155(2):462–77. doi: 10.1016/j.cell.2013.09.034
- HigaN., AkahaneT., Hamada T. et al Distribution and favorable prognostic implication of genomic EGFR alterations in IDH-wildtype glioblastoma. Cancer Med 2023;12(1):49–60. doi: 10.1002/cam4.4939
- Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. doi: 10.1093/neuonc/noab106
- Gan H.K., Cvrljevic A.N., Johns T.G. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013;280(21):5350–70. doi: 10.1111/febs.12393
- Eskilsson E., Rosland G.V., Talasila K.M. et al. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro Oncol 2016;18(12):55. doi: 10.1093/neuonc/now113
- Alnahhas I., Rayi A., Guillermo Prieto Eibl M.D.P. et al. Prognostic implications of epidermal and platelet-derived growth factor receptor alterations in 2 cohorts of IDH wt glioblastoma. Neurooncol Adv 2021;3(1):vdab127. doi: 10.1093/noajnl/vdab127
- Li J., Liang R., Song C. et al. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018;2018(11):731–42. doi: 10.2147/OTT.S155160
- Hovinga K.E., McCrea H.J., Brennan C. et al. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J Neurooncol 2019;142(2):337–45. doi: 10.1007/s11060-019-03102-5
- Le Rhun E., Preusser M., Roth P. et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019;80:101896. doi: 10.1016/j.ctrv.2019.101896
- Vivanco I., Robins H.I., Rohle D. et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2012;2(5):458–71. doi: 10.1158/2159-8290.CD-11-0284
- Desai R., Suryadevara C.M., Batich K.A. et al. Emerging immunotherapies for glioblastoma. Expert Opin Emerg Drugs 2016;21(2):133–45. doi: 10.1080/14728214.2016.1186643
- Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. doi: 10.1016/S1470-2045(17)30517-X
- Felsberg J., Hentschel B., Kaulich K. et al. German Glioma Network. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 2017;23(22):6846–55. doi: 10.1158/1078-0432.CCR-17-0890
- Krasnov G.S., Ghukasyan L.G., Abramov I.S., Nasedkina T.V. Determination of the subclonal tumor structure in childhood acute myeloid leukemia and acral melanoma by next-generation sequencing. Molekulyarnaya biologiya = Molecular Biology 2021;55(5):829–45. (In Russ.). doi: 10.31857/S0026898421050050
- Chang M.T., Asthana S., Gao S.P. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 2016;34(2):155–63. doi: 10.1038/nbt.3391
- Naidoo J., Sima C.S., Rodriguez K. et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib. Cancer 2015;121(18):3212–20. doi: 10.1002/cncr.29493
- The cBio Cancer Genomics Portal. https://www.cbioportal.org/.24. Zacher A., Kaulich K., Stepanow S. et al. Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathol 2017;27(2):146–59. doi: 10.1111/bpa.12367
- Blobner J., Dengler L., Blobner S. et al. Significance of molecular diagnostics for therapeutic decision-making in recurrent glioma. Neurooncol Adv 2023;5(1):vdad060. doi: 10.1093/noajnl/vdad060
- Rutkowska A., Strózik T., Jędrychowska-Dańska K. et al. Immunohistochemical detection of EGFRvIII in glioblastoma – anti-EGFRvIII antibody validation for diagnostic and CAR-T purposes. Biochem Biophys Res Commun 2023;685:149133. doi: 10.1016/j.bbrc.2023.149133
- Padovan M., Maccari M., Bosio A. et al. Actionable molecular alterations in newly diagnosed and recurrent IDH1/2 wild-type glioblastoma patients and therapeutic implications: a large mono-institutional experience using extensive next-generation sequencing analysis. Eur J Cancer 2023;191:112959. doi: 10.1016/j.ejca.2023.112959
- Li J., Liang R., Song C. et al. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018;11:731–42. doi: 10.2147/OTT.S155160
- Yang K., Ren X., Tao L. et al. Prognostic implications of epidermal growth factor receptor variant III expression and nuclear translocation in Chinese human gliomas. Chin J Cancer Res 2019;31(1):188–202. doi: 10.21147/j.issn.1000-9604.2019.01.14
- Begagić E., Pugonja R., Bečulić H. et al. Molecular targeted therapies in glioblastoma multiforme: a systematic overview of global trends and findings. Brain Sci 2023;13(11):1602. doi: 10.3390/brainsci13111602
- An Z., Aksoy O., Zheng T. et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018;37(12):1561–75. doi: 10.1038/s41388-017-0045-7
- Hegi M.E., Diserens A.C., Bady P. et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib – a phase II trial. Mol Cancer Ther 2011;10(6):1102–12. doi: 10.1158/1535-7163.MCT-11-0048
- Hu C., Leche C.A., Kiyatkin A. et al. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022;602(7897):518–22. doi: 10.1038/s41586-021-04393-3
- Nathanson D.A., Gini B., Mottahedeh J. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 2014;343(6166):72–6. doi: 10.1126/science.1241328
Supplementary files


