Preview

Advances in Molecular Oncology

Advanced search

Effects of a novel HSP90 inhibitor on estrogen receptor α signaling pathways in breast cancer cells

https://doi.org/10.17650/2313-805X-2024-11-4-54-65

Abstract

Introduction. Heat shock proteins (HSP), also known as molecular chaperones, are a large family of proteins that play crucial roles in histogenesis, homeostasis, and the folding and functional regulation of numerous client proteins. Among them, HSP90 is a key player, particularly in supporting the growth of tumor cells. HSP90 impacts multiple carcinogenic signaling pathways, including BCR-ABL, Raf-1, AKT, human epidermal growth factor receptor 2 (ERBB2/HER2), hypoxia-inducible factor 1-α (HIF-1α), janus kinase 2 (JAK2), STAT3, p53, and estrogen receptor α (ERα). As a result, the search for new, selective inhibitors of this chaperone is a high priority in medicinal chemistry and oncology.
Aim. To evaluate the antiproliferative activity of a novel HSP90 inhibitor, THB5T-1, on ERα-positive breast cancer cell lines and assess its anti-estrogenic potential and selectivity.
Materials and methods. The study was conducted on hormone-dependent breast cancer cell lines MCF7 and T47D, along with the normal fibroblast line hFB-hTERT. The antiproliferative activity of THB5T-1 was measured using the MTT assay, while immunoblotting was employed to analyze the effects of HSP90 inhibition on cell signaling pathways. Anti-estrogenic activity was assessed in MCF7 cells via a reporter assay, and molecular modeling was used to construct a model of THB5T-1 interaction with the ligand-binding domain of ERα.
Results. The half-maximal inhibitory concentration (IC50) of THB5T-1 was determined to be 4.3 μM for MCF7 cells and 5.6 μM for T47D cells. At a concentration of 25 μM, cell survival decreased to 20%. The selectivity index for THB5T-1 varied from 3.7 to 5.0 in different breast cancer cell lines. The compound’s effects on hormonal pathways in MCF7 cells, as observed via reporter assay and immunoblotting, were dose-dependent. These findings were further supported by molecular docking studies, showing THB5T-1 interaction with the ligand-binding domain of ERα. Additionally, the antiproliferative activity of THB5T-1 in MCF7 cells was associated with reduced expression of cell cycle regulators cyclin D1 and cyclin-dependent kinase 4 (CDK4). Significant efficacy of compound THB5T-1 in combination with a selective AKT inhibitor was revealed.
Conclusion. Compound THB5T-1 demonstrated significant antiproliferative effects on ERα-positive breast cancer cells and exhibited high selectivity. Its anti-estrogenic effects highlight its potential as a selective inhibitor of the HSP90/ ERα/GREB1 pathway, effectively blocking ERα-mediated cell proliferation.

About the Authors

A. M. Scherbakov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; G.F.Gauze Institute of New Antibiotics
Russian Federation

Alexander Mikhailovich Scherbakov

24 Kashirskoe Shosse, 115522 Moscow

11 Bol’shaya Pirogovskaya St., 119021 Moscow



D. V. Sorokin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, 115522 Moscow



D. I. Salnikova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Russian Federation

24 Kashirskoe Shosse, 115522 Moscow

47 Leninsky Prospekt, 119991 Moscow



M. V. Gudkova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, 115522 Moscow



O. E. Andreeva
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, 115522 Moscow



A. L. Mikhaylova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, 115522 Moscow



N. A. Varabyeva
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Belarus

5/2 Akademika Kuprevicha St., 220084 Minsk



Yu. A. Piven
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Belarus

5/2 Akademika Kuprevicha St., 220084 Minsk



References

1. Zagouri F., Bournakis E., Koutsoukos K. et al. Heat shock protein 90 (hsp90) expression and breast cancer. Pharmaceuticals (Basel) 2012;5(9):1008–20. DOI: 10.3390/ph5091008

2. Birbo B., Madu E.E., Madu C.O. et al. Role of HSP90 in cancer. Int J Mol Sci 2021;22(19):10317. DOI: 10.3390/ijms221910317

3. Whitley D., Goldberg S.P., Jordan W.D. Heat shock proteins: a review of the molecular chaperones. J Vasc Surg 1999;29(4):748–51. DOI: 10.1016/s0741-5214(99)70329-0

4. Schwab M., Multhoff G. A Low membrane Hsp70 expression in tumor cells with impaired lactate metabolism mediates radiosensitization by NVP-AUY922. Front Oncol 2022;12:861266. DOI: 10.3389/fonc.2022.861266

5. Li W., Tsen F., Sahu D. et al. Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: intentionally or unintentionally. Int Rev Cell Mol Biol 2013;303:203–35. DOI: 10.1016/b978-0-12-407697-6.00005-2

6. Zhang S., Wang C., Ma B. et al. Mutant p53 drives cancer metastasis via RCP-mediated Hsp90α secretion. Cell Rep 2020;32(1):107879. DOI: 10.1016/j.celrep.2020.107879

7. Gougelet A., Bouclier C., Marsaud V. et al. Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells. J Steroid Biochem Mol Biol 2005;94(1–3):71–81. DOI: 10.1016/j.jsbmb.2005.01.018

8. Prodromou C. Mechanisms of Hsp90 regulation. Biochem J 2016;473(16):2439–52. DOI: 10.1042/bcj20160005

9. Piven Y.A., Yastrebova M.A., Khamidullina A.I. et al. Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes targeting HSP90-HER2 axis in breast cancer cells. Bioorgan Med Chem 2022;53:116521. DOI: 10.1016/j.bmc.2021.116521

10. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002;8(4 Suppl.):S55–61. DOI: 10.1016/s1471-4914(02)02316-x

11. Piven Yu.A., Scherbakov A.M., Yastrebova M.A. et al. Effective synthesis of novel dihydrobenzisoxazoles bearing the 2-aminothiazole moiety and evaluation of the antiproliferative activity of their acylated derivatives. Org Biomol Chem 2021;19(47):10432–43. DOI: 10.1039/d1ob01614h

12. Pillai R.N., Ramalingam S.S. Throwing more cold water on heat shock protein 90 inhibitors in NSCLC. J Thorac Oncol 2018;13(4):473–4. DOI: 10.1016/j.jtho.2018.02.010

13. Varabyeva N.A., Salnikova D.I., Krymov S.K. et al. Design and synthesis of novel 6,7-dihydrobenzo[d]isoxazol-4(5H)-one derivatives bearing 1,2,3-triazole moiety as potential Hsp90 inhibitors and their evaluation as antiproliferative agents. Chem Select 2024;9(12):e202304812. DOI: 10.1002/slct.202304812

14. Egorov E.E., Moldaver M.V., Vishniakova Kh.S. et al. Enhanced control of proliferation in telomerized cells. Ontogenez 2007;38(2):105–19.

15. Iselt M., Holtei W., Hilgard P. The tetrazolium dye assay for rapid in vitro assessment of cytotoxicity. Arzneimittelforschung 1989;39(7):747–9.

16. Ilovaisky A.I., Scherbakov A.M., Chernoburova E.I. et al. Secosteroid diacylhydrazines as novel effective agents against hormone-dependent breast cancer cells. J Steroid biochem Mol Biol 2024;244:106597. DOI 10.1016/j.jsbmb.2024.106597

17. Reid G., Hübner M.R., Métivier R. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol Cell 2003;11(3):695–707. DOI: 10.1016/s1097-2765(03)00090-x

18. Scherbakov A.M., Komkov A.V., Komendantova A.S. et al. Steroidal pyrimidines and dihydrotriazines as novel classes of anticancer agents against hormone-dependent breast cancer cells. Front Pharmacol 2017;8:979. DOI: 10.3389/fphar.2017.00979

19. Sander T., Freyss J., von Korff M. et al. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 2015;55(2):460–73. DOI: 10.1021/ci500588j

20. O’Boyle N.M., Banck M., James C.A. et al. Open babel: an open chemical toolbox. J Cheminform 2011;3:33. DOI: 10.1186/1758-2946-3-33

21. Morris G.M., Huey R., Lindstrom W. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30(16):2785–91. DOI: 10.1002/jcc.21256

22. Alhossary A., Handoko S.D., Mu Y. et al. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 2015;31(13):2214–6. DOI: 10.1093/bioinformatics/btv082

23. Abraham M.J., Murtola T., Schulz R. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1–2: 19–25. DOI: 10.1016/j.softx.2015.06.001

24. Sousa da Silva A.W., Vranken W.F. ACPYPE – AnteChamber PYthon Parser interfacE. BMC Res Notes 2012;5:367. DOI: 10.1186/1756-0500-5-367

25. Valdes-Tresanco M.S., Valdes-Tresanco M.E., Valiente P.A. et al. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 2021;17(10):6281–91. DOI: 10.1021/acs.jctc.1c00645

26. Hawkins G.D., Cramer C.J., Truhlar D.G. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Physical Chem 1996;100(51):19824–39. DOI: 10.1021/jp961710n

27. El-Naggar M., Eldehna W.M., Almahli H. et al. Novel thiazolidinone/thiazolo[3,2-a]benzimidazolone-Isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: one-pot synthesis and in vitro biological evaluation. Molecules (Basel) 2018;23(6):1420. DOI: 10.3390/molecules23061420

28. Ilovaisky A.I., Scherbakov A.M., Merkulova V.M. et al. Secosteroid-quinoline hybrids as new anticancer agents. J Steroid Biochem molecular Biol 2023;228:106245. DOI: 10.1016/j.jsbmb.2022.106245

29. Supasena W., Muangnoi C., Praengam K. et al. Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. Eur Polymer J 2020;141:110056. DOI: 10.1016/j.eurpolymj.2020.110056

30. Duarte D., Nunes M., Ricardo S. et al. Combination of antimalarial and CNS drugs with antineoplastic agents in MCF-7 breast and HT-29 colon cancer cells: biosafety evaluation and mechanism of action. Biomolecules 2022;12(10):1490. DOI: 10.3390/biom12101490

31. Tokui K., Adachi H., Waza M. et al. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum Mol Genet 2009;18(5):898–910. DOI: 10.1093/hmg/ddn419

32. Kudryavtsev V.A., Khokhlova A.V., Mosina V.A. et al. Induction of Hsp70 in tumor cells treated with inhibitors of the Hsp90 activity: a predictive marker and promising target for radiosensitization. PloS One 2017;12(3):e0173640. DOI: 10.1371/journal.pone.0173640

33. Shimomura A., Yamamoto N., Kondo S. et al. First-in-Human phase i study of an oral HSP90 inhibitor, TAS-116, in patients with advanced solid tumors. Mol Cancer Ther 2019;18(3):531–40. DOI: 10.1158/1535-7163.mct-18-0831

34. Ryan D., Carberry S., Murphy Á.C. et al. Calnexin, an ER stress-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. J Transl Med 2016;14(1):196. DOI: 10.1186/s12967-016-0948-z

35. Powell L.E., Foster P.A. Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer Med 2021;10(8):2812–25. DOI: 10.1002/cam4.3836

36. Yadav M., Singh A.K., Kumar A. et al. An insight to heat shock protein 90: a remedy for multiple problems. Curr Pharm Des 2022;28(32):2664–76. DOI: 10.2174/1381612828666220829120630

37. Cheng M., Michalski S., Kommagani R. Role for growth regulation by estrogen in breast cancer 1 (GREB1) in hormone-dependent cancers. Int J Mol Sci 2018;19(9):2543. DOI: 10.3390/ijms19092543

38. Qie S., Diehl J.A. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016;94(12):1313–26. DOI: 10.1007/s00109-016-1475-3

39. De U., Chun P., Choi W.S. et al. A novel anthracene derivative, MHY412, induces apoptosis in doxorubicin-resistant MCF-7/Adr human breast cancer cells through cell cycle arrest and downregulation of P-glycoprotein expression. Int J Oncol 2014;44(1):167–76. DOI: 10.3892/ijo.2013.2160

40. Piven Y.A., Zinovich V.G., Shcherbakov D.N. et al. Computer-aided design, synthesis and evaluation of new SARS-CoV-2 Mpro inhibitors based on 1,5,6,7-tetrahydro-4H-indazol-4-one scaffold. Med Chem Res 2023;33(1):151–63. DOI: 10.1007/s00044-023-03174-z

41. Thorn C.F., Oshiro C., Marsh S. et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 2011;21(7):440–6. DOI: 10.1097/FPC.0b013e32833ffb56

42. O’Reilly M., Mellotte G., Ryan B. et al. Gastrointestinal side effects of cancer treatments. Ther Adv Chronic Dis 2020;11: 2040622320970354. DOI: 10.1177/2040622320970354

43. Jin H., Wang L., Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023;22(3):213–34. DOI: 10.1038/s41573-022-00615-z

44. Kau T.R., Schroeder F., Ramaswamy S. et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 2003;4(6):463–76. DOI: 10.1016/s1535-6108(03)00303-9

45. Scherbakov A.M., Bogdanov F.B., Mikhaylova A.L. et al. Targeting AKT kinase in hydroxytamoxifen-resistant breast cancer cells. Med Sci Forum 2023;20(1):4. DOI: 10.3390/IECC2023-14224


Review

For citations:


Scherbakov A.M., Sorokin D.V., Salnikova D.I., Gudkova M.V., Andreeva O.E., Mikhaylova A.L., Varabyeva N.A., Piven Yu.A. Effects of a novel HSP90 inhibitor on estrogen receptor α signaling pathways in breast cancer cells. Advances in Molecular Oncology. 2024;11(4):54-65. (In Russ.) https://doi.org/10.17650/2313-805X-2024-11-4-54-65

Views: 322


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)