Signaling cascades are targets for breast cancer therapy in the light of genome – wide sequencing data
https://doi.org/10.17650/2313-805X-2025-12-1-8-13
Abstract
Development of next generation sequencing technologies allows to identify a large number of genetic landscape types in various cancers including breast cancer. Frequent genetic abnormalities identified using whole genome sequencing are point mutations (missense, nonsense mutations), deletions, insertions, which usually lead to activation of protooncogenes and inactivation of tumor suppressor genes. Genome sequencing of malignant tumors allowed, on one hand, to identify driver mutations in carcinogenic genes in different organs, and on the other – to use mutated genes for targeted therapy. Study of biological functions of these genes from the point of view of their contribution to carcinogenesis allows to better understand its mechanism. In this review, signaling cascades of breast cancer with identified mutated genes – targets for therapy – are analyzed.
About the Authors
L. F. GulyaevaRussian Federation
Lyudmila Fyodorovna Gulyaeva
2/12 Timakova St., Novosibirsk 630060, Russia
M. L. Filipenko
Russian Federation
8 Akademika Lavrentieva St., Novosibirsk 630090, Russia
N. E. Kushlinskii
Russian Federation
24 Kashirskoe Shosse, Moscow 115522, Russia
References
1. Marti J.L.G., Hyder T., Nasrazadani A. et al. The evolving landscape of HER2-directed breast cancer therapy. Curr Treat Options Oncol 2020;21(10):82. DOI: 10.1007/s11864-020-00780-6
2. Tarantino P., Viale G., Press M.F. et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann Oncol 2023;34(8):645–59. DOI: 10.1016/j.annonc.2023.05.008
3. Ferguson K.M. Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 2008;37:353–73. DOI: 10.1146/annurev.biophys.37.032807.125829
4. Li X., Zhao L., Chen C. et al. Can EGFR be a therapeutic target in breast cancer? Biochim Biophys Acta Rev Cancer 2022;1877(5):188789. DOI: 10.1016/j.bbcan.2022.188789
5. Raghav K.P.S., Moasser M.M. Molecular pathways and mechanisms of HER2 in cancer therapy. Clin Cancer Res 2023;29(13):2351–61. DOI: 10.1158/1078-0432.CCR-22-0283
6. Lyu H., Han A., Polsdofer E. et al. Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm Sin B 2018;8(4):503–10. DOI: 10.1016/j.apsb.2018.05.010
7. Kilroy M.K., Park S., Feroz W. et al. HER3 alterations in сancer and potential clinical implications. Cancers (Basel) 2022;14(24):6174. DOI: 10.3390/cancers14246174
8. Papa F., Grinda T., Rassy E. et al. Long road towards effective HER3 targeting in breast cancer. Cancer Treat Rev 2024;129:102786. DOI: 10.1016/j.ctrv.2024.102786
9. Uliano J., Corvaja C., Curigliano G., Tarantino P. Targeting HER3 for cancer treatment: a new horizon for old target. ESMO Open 2023;8(1):100790. DOI: 10.1016/j.esmoop.2023.100790
10. Hoxhaj G., Manning B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020;20(2):74–88. DOI: 10.1038/s41568-019-0216-7
11. Mishra R., Alanazi S., Yuan L. et al. Activating HER3 mutations in breast cancer. Oncotarget 2018;9(45):27773–88. DOI: 10.18632/oncotarget.25576
12. Murugan A.K., Grieco M., Tsuchida N. RAS mutations in human cancers: roles in precision medicine. Semin Cancer Biol 2019;59:23–35. DOI: 10.1016/j.semcancer.2019.06.007
13. Kamian S., Ashoori H., Vahidian F., Davoudi S. The relevance of common K-RAS gene mutations and K-RAS mRNA expression with clinicopathological findings and survival in breast cancer. Asian Pac J Cancer Prev 2023;24(3):909–14. DOI: 10.31557/APJCP.2023.24.3.909
14. Banys-Paluchowski M., Milde-Langosch K., Fehm T. et al. Clinical relevance of H-RAS, K-RAS, and N-RAS mRNA expression in primary breast cancer patients. Breast Cancer Res Treat 2020;179(2):403–14. DOI: 10.1007/s10549-019-05474-8
15. Hossain M.A. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024;979:176727. DOI: 10.1016/j.ejphar.2024.176727
16. Wang L., Lu Q., Jiang K. et al. BRAF V600E mutation in triplenegative breast cancer: a case report and literature review. Oncol Res Treat 2022;45(1–2):54–61. DOI: 10.1159/000520453
17. Khojasteh Poor F., Keivan M., Ramazii M. et al. Mini review: the FDA-approved prescription drugs that target the MAPK signaling pathway in women with breast cancer. Breast Dis 2021;40(2):51–62. DOI: 10.3233/BD-201063
18. Miricescu D., Totan A., Stanescu-Spinu I.I. et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci 2020;22(1):173. DOI: 10.3390/ijms22010173
19. Hinz N., Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019;17(1):154. DOI: 10.1186/s12964-019-0450-3
20. Nunnery S.Е., Mayer I.A. Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 2020;80(16):1685–97. DOI: 10.1007/s40265-020-01394-w
21. Shen L.S., Jin X.Y., Wang X.M. et al. Advances in endocrine and targeted therapy for hormone-receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. Chin Med J 2020;133:1099–108. DOI: 10.1097/CM9.0000000000000745
22. Mosele F., Stefanovska B., Lusque A. et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol 2020;31(3):377–86. DOI: 10.1016/j.annonc.2019.11.006
23. Ertay A., Liu H., Liu D. et al. WDHD1 is essential for the survival of PTEN-inactive triple-negative breast cancer. Cell Death Dis 2020;11(11):1001. DOI: 10.1038/s41419-020-03210-5
24. Hanker A.B., Sudhan D.R., Arteaga C.L. Overcoming endocrine resistance in breast cancer. Cancer Cell 2020;37(4):496–513. DOI: 10.1016/j.ccell.2020.03.009
25. Endicott S.J., Ziemba Z.J., Beckmann L.J. et al. Inhibition of class I PI3K enhances chaperone-mediated autophagy. J Cell Biol 2020;219(12):202001031. DOI: 10.1083/jcb.202001031
26. Rugo H.S., Raskina K., Schrock A.B. et al. Biology and targetability of the extended spectrum of PIK3CA mutations detected in breast carcinoma. Clin Cancer Res 2023;29(6):1056–67. DOI: 10.1158/1078-0432.CCR-22-2115
27. Riobo-Del Galdo N.A., Montero Á.L, Wertheimer E.V. Role of Hedgehog signaling in breast cancer: pathogenesis and therapeutics. Cells 2019;8(4):375. DOI: 10.3390/cells8040375
28. Habib J.G., O’Shaughnessy J.A. The hedgehog pathway in triple-negative breast cancer. Cancer Med 2016;5(10):2989–3006. DOI: 10.1002/cam4.833
29. Patel D.K., Kesharwani R., Verma A. et al. Scope of Wnt signaling in the precise diagnosis and treatment of breast cancer. Drug Discov Today 2023;28(7):103597. DOI: 10.1016/j.drudis.2023.103597
30. Xu X., Zhang M., Xu F., Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020;19(1):165. DOI: 10.1186/s12943-020-01276-5
31. Harbeck N., Penault-Llorca F., Cortes J. et al. Breast cancer. Nat Rev Dis Primers 2019;5(1):66. DOI: 10.1038/s41572-019-0111-2
32. Theodosiou A., Arhondakis S., Baumann M., Kossida S. Evolutionary scenarios of Notch proteins. Mol Biol Evol 2009;26(7):1631–40. DOI: 10.1093/molbev/msp075
33. Krishna B.M., Jana S., Singhal J. et al. Notch signaling in breast cancer: from pathway analysis to therapy. Cancer Lett 2019;461:123–31. DOI: 10.1016/j.canlet.2019.07.012
34. Huang P., Chen A., He W. et al. BMP-2 induces EMT and breast cancer stemness through Rb and CD44. Cell Death Discov 2017;3:17039. DOI: 10.1038/cddiscovery.2017.39
35. Nilendu P., Kumar A., Kumar A. et al. Breast cancer stem cells as last soldiers eluding therapeutic burn: a hard nut to crack. Int J Cancer 2018;142(1):7–17. DOI: 10.1002/ijc.30898
Review
For citations:
Gulyaeva L.F., Filipenko M.L., Kushlinskii N.E. Signaling cascades are targets for breast cancer therapy in the light of genome – wide sequencing data. Advances in Molecular Oncology. 2025;12(1):8-13. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-1-8-13