Preview

Advances in Molecular Oncology

Advanced search

The balance between deception and adaptation: vasculogenic mimicry as a tumor survival strategy

https://doi.org/10.17650/2313-805X-2025-12-1-14-30

Abstract

Vasculogenic mimicry is a unique process through which tumor cells imitate normal vascular endothelial cells to secure access to the blood flow. In this review, we consider molecular mechanisms underlying this phenomenon and its importance in the context of solid tumor development. We have analyzed survival strategies of tumor cells using vasculogenic mimicry and described potential therapeutic approaches aimed at tumor growth and metastasis suppression. Highlighting the methods of histological and molecular identification of vasculogenic mimicry promotes better understanding of this phenomenon and its early diagnosis. The review focuses on the necessity of further research in the area of vasculogenic mimicry to conceptualize mechanisms underlying carcinogenesis. We have analyzed 109 articles from the leading biomedical databases including SciVerse Scopus, PubMed, Web of Science and RSCI (Russian Science Citation Index) which allowed us to summarize current scientific data and identify the key trends in the area of molecular oncology.

About the Authors

E. A. Prosekina
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Elizaveta Andreevna Prosekina 

68 Leningradskaya St., Pesochny Settlement, Saint Petersburg 197758, Russia 



V. A. Shapkina
Saint Petersburg State University
Russian Federation

7/9 Universitetskaya Emb., Saint Petersburg 199034, Russia 



A. E. Karpov
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

68 Leningradskaya St., Pesochny Settlement, Saint Petersburg 197758, Russia 



E. Yu. Fedorutseva
National Research Tomsk State University
Russian Federation

36 Lenin Prospekt, Tomsk 634050, Russia 



A. S. Artemyeva
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

68 Leningradskaya St., Pesochny Settlement, Saint Petersburg 197758, Russia 



References

1. Kuczynski E.A., Vermeulen P.B., Pezzella F. et al. Vessel co-option in cancer. Nat Rev Clin Oncol 2019;16(8):469–93. DOI: 10.1038/s41571-019-0181-9

2. Jiang X., Wang J., Deng X. et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 2020;39(1):1–19. DOI: 10.1186/s13046-020-01709-5

3. Pinto M.P., Sotomayor P., Carrasco-Avino G. et al. Escaping antiangiogenic therapy: strategies employed by cancer cells. Int J Mol Sci 2016;17(9):1–20. DOI: 10.3390/ijms17091489

4. Maniotis A.J., Folberg R., Hess A. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155(3):739–52. DOI: 10.1016/S0002-9440(10)65173-5

5. Damsky C.H., Fisher S.J. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol 1998;10(5):660–6. DOI: 10.1016/S0955-0674(98)80043-4

6. Kučera T., Strilić B., Regener K. et al. Ancestral vascular lumen formation via basal cell surfaces. PLoS One 2009;4(1):e4132. DOI: 10.1371/JOURNAL.PONE.0004132

7. Racordon D., Valdivia A., Mingo G. et al. Structural and functional identification of vasculogenic mimicry in vitro. Sci Rep 2017;7(1):1–12. DOI: 10.1038/s41598-017-07622-w

8. Paulis Y.W.J., Soetekouw P.M.М.B., Verheul H.M.W. et al. Signalling pathways in vasculogenic mimicry. Biochim Bioph Acta 2010;1806(1):18–28. DOI: 10.1016/J.BBCAN.2010.01.001

9. El Hallani S., Boisselier B., Peglion F. et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 2010;133(Pt 4):973. DOI: 10.1093/BRAIN/AWQ044

10. Wang W., Lin P., Han C. et al. Vasculogenic mimicry contributes to lymph node metastasis of laryngeal squamous cell carcinoma. J Exp Clin Cancer Res 2010;29(1):60. DOI: 10.1186/1756-9966-29-60/TABLES/4

11. Ricci-Vitiani L., Lombardi D.G., Pilozzi E. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2006;445(7123):111–5. DOI: 10.1038/nature05384

12. Ponti D., Costa A., Zaffaroni N. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005;65(13):5506–11. DOI: 10.1158/0008-5472.CAN-05-0626

13. Liu Z., Li Y., Zhao W. et al. Demonstration of vasculogenic mimicry in astrocytomas and effects of Endostar on U251 cell. Pathol Res Pract 2011;207(10):645–51. DOI: 10.1016/J.PRP.2011.07.012

14. Gao Y., Zhao X.L., Gu Q. et al. Correlation of vasculogenic mimicry with clinicopathologic features and prognosis of ovarian carcinoma. Zhonghua Bing Li Xue Za Zhi 2009;38(9):585–9. (In Chinese). DOI: 10.3760/cma.j.issn.0529-5807.2009.09.003

15. Lim D., Do Y., Kwon B.S. et al. Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer. BMB Rep 2020;53(6):291. DOI: 10.5483/BMBREP.2020.53.6.060

16. Van Der Schaft D.W.J., Hillen F., Pauwels P. et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res 2005;65(24):11520–8. DOI: 10.1158/0008-5472.CAN-05-2468

17. Cesca K., Oliveira E.M. Confocal laser microscopy for VM analysis with DAPI and phalloidin staining. Methods Mol Biol 2022;2514:153–61. DOI: 10.1007/978-1-0716-2403-6_15

18. De Andrade Peixoto M., Marques dos Reis E., Marques Porto L. Cancer cell spheroids as a 3D model for exploring the pathobiology of vasculogenic mimicry. Methods Mol Biol 2022;2514:45–51. DOI: 10.1007/978-1-0716-2403-6_5

19. Kobayashi H., Shirakawa K., Kawamoto S. et al. Rapid accumulation and internalization of radiolabeled Herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd) 256. Cancer Res 2002;62(3):860–6.

20. Chen L., Zhang S., Li X. et al. A pilot study of vasculogenic mimicry immunohistochemical expression in intraocular melanoma model. Oncol Rep 2009;21(4):989–94. DOI: 10.3892/OR_00000313/HTML

21. Zhang S., Zhang D., Wang Y. et al. Morphologic research of microcirculation patterns in human and animal melanoma. Med Oncol 2005;23(3):403–9. DOI: 10.1385/MO:23:3:403

22. Angara K., Borin T.F., Arbab A.S. Vascular mimicry: a novel neovascularization mechanism driving anti-angiogenic therapy (AAT) resistance in glioblastoma. Transl Oncol 2017;10(4):650–60. DOI: 10.1016/j.tranon.2017.04.007

23. Delgado-Bellido D., Serrano-Saenz S., Fernández-Cortés M. et al. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 2017;16(1):1–14. DOI: 10.1186/S12943-017-0631-X

24. Clemente M., Pérez-Alenza M.D., Illera J.C. et al. Histological, immunohistological, and ultrastructural description of vasculogenic mimicry in canine mammary cancer. Vet Pathol 2010;47(2):265–74. DOI: 10.1177/0300985809353167

25. Folberg R., Maniotis A.J. Vasculogenic mimicry. APMIS 2004; 112(7–8):508–25. DOI: 10.1111/J.1600-0463.2004.APM11207-0810.X

26. Hendrix M.J.C., Seftor E.A., Hess A.R. et al. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 2003;3(6):411–21. DOI: 10.1038/nrc1092

27. Hendrix M.J.C., Seftor E.A., Kirschmann D.A. et al. Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann N Y Acad Sci 2003;995:151–61. DOI: 10.1111/j.1749-6632.2003.tb03218.x

28. Kirschmann D.A., Seftor E.A., Hardy K.M. et al. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 2012;18(10):2726–32. DOI: 10.1158/1078-0432.CCR-11-3237

29. Sun B., Zhang S., Zhao X. et al. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol 2004;25(6):1609–14. DOI: 10.3892/IJO.25.6.1609/HTML

30. McDonald D.M., Munn L., Jain R.K. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 2000;156(2):383. DOI: 10.1016/S0002-9440(10)64740-2

31. Huijbers E.J.M., Van Beijnum J.R., Thijssen V.L. et al. Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updat 2016;25:26–37. DOI: 10.1016/J.DRUP.2016.02.002

32. Riabov V., Gudima A., Wang N. et al. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 2014;5:75. DOI: 10.3389/FPHYS.2014.00075

33. Barnett F.H., Rosenfeld M., Wood M. et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep 2016;6:36659. DOI: 10.1038/SREP36659

34. Hutchenreuther J., Vincent K., Norley C.R. et al. Activation of cancer-associated fibroblasts is required for tumor neovascularization in a murine model of melanoma. Matrix Biol 2018;74:52–61. DOI: 10.1016/J.MATBIO.2018.06.003

35. Anderberg C., Pietras K. On the origin of cancer-associated fibroblasts. Cell Cycle 2009;8(10):1461–5. DOI: 10.4161/CC.8.10.8557

36. Yu Y., Xiao C.H., Tan L.D. et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer 2014;110(3):724–32. DOI: 10.1038/BJC.2013.768

37. Heldin C.H., Rubin K., Pietras K. et al. High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 2004;4(10): 806–13. DOI: 10.1038/nrc1456

38. Bittner M., Meltzer P., Chen Y. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000;406(6795):536–40. DOI: 10.1038/35020115

39. Seftor E.A., Meltzer P.S., Schatteman G.C. et al. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol 2002;44(1):17–27. DOI: 10.1016/S1040-8428(01)00199-8

40. Seftor E.A., Meltzer P.S., Kirschmann D.A. et al. Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis 2002;19(3):233–46. DOI: 10.1023/A:1015591624171

41. Sun B., Zhang D., Zhao N. et al. Epithelial-to-endothelial transition and cancer stem cells: two cornerstones of vasculogenic mimicry in malignant tumors. Oncotarget 2017;8(18):30502. DOI: 10.18632/ONCOTARGET.8461

42. Velez D.O., Tsui B., Goshia T. et al. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nature Commun 2017;8(1):1–12. DOI: 10.1038/s41467-017-01556-7

43. Li M., Gu Y., Zhang Z. et al. Vasculogenic mimicry: a new prognostic sign of gastric adenocarcinoma. Pathol Oncol Res 2009;16(2):259–66. DOI: 10.1007/S12253-009-9220-7

44. Lu X.S., Sun W., Ge C.Y. et al. Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol 2013;42(6):2103–115. DOI: 10.3892/IJO.2013.1897/HTML

45. Liu X., He H., Zhang F. et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis 2022;13(5):483. DOI: 10.1038/S41419-022-04950-2

46. Schnegg C.I., Yang M.H., Ghosh S.K. et al. Induction of vasculogenic mimicry overrides VEGF-A silencing and enriches stem-like cancer cells in melanoma. Cancer Res 2015;75(8):1682–90. DOI: 10.1158/0008-5472.CAN-14-1855/651621/AM/INDUCTION-OF-VASCULOGENIC-MIMICRY-OVERRIDES-VEGF-A

47. Valdivia A., Mingo G., Aldana V. et al. Fact or fiction, it is time for a verdict on vasculogenic mimicry? Front Oncol 2019;9:680. DOI: 10.3389/fonc.2019.00680

48. Williamson S.C., Metcalf R.L., Trapani F. et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun 2016;7(1):1–14. DOI: 10.1038/ncomms13322

49. Liu T.J., Sun B.C., Zhao X.L. et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 2013;32(5):544–53. DOI: 10.1038/ONC.2012.85

50. Ren K., Yao N., Wang G. et al. Vasculogenic mimicry: a new prognostic sign of human osteosarcoma. Hum Pathol 2014;45(10): 2120–9. DOI: 10.1016/J.HUMPATH.2014.06.013

51. Tang N.N., Zhu H., Zhang H.J. et al. HIF-1α induces VE-cadherin expression and modulates vasculogenic mimicry in esophageal carcinoma cells. World J Gastroenterol 2914;20(47):17894–904. DOI: 10.3748/WJG.V20.I47.17894

52. Xiao T., Zhong W., Zhao J. et al. Polyphyllin I suppresses the formation of vasculogenic mimicry via Twist1/VE-cadherin pathway. Cell Death Dis 2018;9(9):906. DOI: 10.1038/S41419-018-0902-5

53. Yeo C., Lee H.J., Lee E.O. Serum promotes vasculogenic mimicry through the EphA2/VE-cadherin/AKT pathway in PC-3 human prostate cancer cells. Life Sci 2019;221:267–73. DOI: 10.1016/J.LFS.2019.02.043

54. Zhao N., Sun B.C., Sun T. et al. Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Med Oncol 2912;29(5):3599–607. DOI: 10.1007/S12032-012-0245-5

55. Chen L.X., He Y.J., Zhao S.Z. et al. Inhibition of tumor growth and vasculogenic mimicry by curcumin through down-regulation of the EphA2/PI3K/MMP pathway in a murine choroidal melanoma model. Cancer Biol Ther 2011;11(2):229–35. DOI: 10.4161/CBT.11.2.13842

56. Hess A.R., Margaryan N.V., Seftor E.A. et al. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn 2007;236(12):3283–96. DOI: 10.1002/DVDY.21190

57. Margaryan N.V., Strizzi L., Abbott D.E. et al. EphA2 as a promoter of melanoma tumorigenicity. Cancer Biol Ther 2009;8(3):279. DOI: 10.4161/CBT.8.3.7485

58. Hess A.R., Seftor E.A., Seftor R.E.B. et al. Phosphoinositide 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res 2003;63(16):4757–62.

59. Li Y., Sun B., Zhao X. et al. MMP-2 and MMP-13 affect vasculogenic mimicry formation in large cell lung cancer. J Cell Mol Med 2017;21(12):3741. DOI: 10.1111/JCMM.13283

60. Liu X., Fassett J., Wei Y., Chen Y. Regulation of DDAH1 as a potential therapeutic target for treating cardiovascular diseases. Evid Based Complement Alternat Med 2013;2:2013:619207. DOI: 10.1155/2013/619207

61. Seftor R.E.B., Seftor E.A., Koshikawa N. et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 2001;61(17):6322–7.

62. Yodkeeree S., Chaiwangyen W., Garbisa S. et al. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem 2009;20(2):87–95. DOI: 10.1016/j.jnutbio.2007.12.003

63. Sood A.K., Seftor E.A., Fletcher M.S. et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol 2001;158(4):1279–88. DOI: 10.1016/S0002-9440(10)64079-5

64. Hess A.R., Postovit L.M., Margaryan N.V. et al. Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res 2005;65(21):9851–60. DOI: 10.1158/0008-5472.CAN-05-2172

65. Fu R., Du W., Ding Z. et al. HIF-1α promoted vasculogenic mimicry formation in lung adenocarcinoma through NRP1 upregulation in the hypoxic tumor microenvironment. Cell Death Disease 2021;12(4):1–11. DOI: 10.1038/s41419-021-03682-z

66. Li W., Zong S.Q., Shi Q. et al. Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: involvement of HIF-1α, claudin-4, and E-cadherin and vimentin. Sci Rep 2016;6:37534. DOI: 10.1038/SREP37534

67. Song Y.Y., Sun L.D., Liu M.L. et al. STAT3, p-STAT3 and HIF-1α are associated with vasculogenic mimicry and impact on survival in gastric adenocarcinoma. Oncol Lett 2014;8(1):431–7. DOI: 10.3892/OL.2014.2059

68. Sun W., Shen Z.Y., Zhang H. et al. Overexpression of HIF-1α in primary gallbladder carcinoma and its relation to vasculogenic mimicry and unfavourable prognosis. Oncol Rep 2012;27(6): 1990–2002. DOI: 10.3892/OR.2012.1746

69. Wang M., Zhao X., Zhu D. et al. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res 2017;36(1):60. DOI: 10.1186/S13046-017-0533-1

70. Wu S., Cheng Z., Yu L. et al. [Expression of CD82/KAI1 and HIF-1α in non-small cell lung cancer and their relationship to vasculogenic mimicry]. Zhongguo Fei Ai Za Zhi 2011;14(12):918–25. DOI: 10.3779/J.ISSN.1009-3419.2011.12.04

71. Zhang J.G., Zhou H.M., Zhang X. et al. Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1α, RhoA/ROCK and Rac1/PAK signaling. BMC Cancer 2020;20(1):32. DOI: 10.1186/S12885-019-6501-8

72. Wang Y., Yang R., Wang X. et al. Evaluation of the correlation of vasculogenic mimicry, Notch4, DLL4, and KAI1/CD82 in the prediction of metastasis and prognosis in non-small cell lung cancer. Medicine 2018;97(52):e13817. DOI: 10.1097/MD.0000000000013817

73. Strizzi L., Postovit L.M., Margaryan N.V. et al. Nodal as a biomarker for melanoma progression and a new therapeutic target for clinical intervention. Expert Rev Dermatol 2009;4(1):67–78. DOI: 10.1586/17469872.4.1.67

74. Strizzi L., Hardy K.M., Seftor E.A. et al. Development and cancer: At the crossroads of Nodal and Notch signaling. Cancer Res 2009;69(18):7131. DOI: 10.1158/0008-5472.CAN-09-1199

75. Hardy K.M., Kirschmann D.A., Seftor E.A. et al. Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Res 2010;70(24):10340–50. DOI: 10.1158/0008-5472.CAN-10-0705

76. Gong W., Sun B., Zhao X. et al. Nodal signaling promotes vasculogenic mimicry formation in breast cancer via the Smad2/3 pathway. Oncotarget 2016;7(43):70152. DOI: 10.18632/ONCOTARGET.12161

77. Zang M., Hu L., Zhang B. et al. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer. Biochem Biophys Res Commun 2017;490(3):913–19. DOI: 10.1016/J.BBRC.2017.06.140

78. Hsu M.Y., Yang M.H., Schnegg C.I. et al. Notch3 signaling-mediated melanoma-endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis. Lab Invest 2017;97(6):725–36. DOI: 10.1038/LABINVEST.2017.1

79. Han C., Sun B., Zhao X. et al. Phosphorylation of STAT3 promotes vasculogenic mimicry by inducing epithelial-to-mesenchymal transition in colorectal cancer. Technol Cancer Res Treat 2017;16(6):1209–19. DOI: 10.1177/1533034617742312

80. Sun T., Zhao N., Zhao X.L. et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 2010;51(2):545–56. DOI: 10.1002/HEP.23311

81. Hulin J.A., Tommasi S., Elliot D., Mangoni A.A. Small molecule inhibition of DDAH1 significantly attenuates triple negative breast cancer cell vasculogenic mimicry in vitro. Biomed Pharmacother 2019;111:602–12. DOI: 10.1016/j.biopha.2018.12.117

82. Cabral-Pacheco G.A., Garza-Veloz I., Castruita-De la Rosa C. et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci 2020;21(24):1–53. DOI: 10.3390/IJMS21249739

83. Sharma N., Seftor R.E., Seftor E.A. et al. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate 2002;50(3):189–201. DOI: 10.1002/PROS.10048

84. Noorolyai S., Shajari N., Baghbani E. et al. The relation between PI3K/AKT signalling pathway and cancer. Gene 2019;698:120–8. DOI: 10.1016/J.GENE.2019.02.076

85. Hendrix M.J.C., Seftor E.A., Meltzer P.S. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 2001;98(14):8018–23. DOI: 10.1073/PNAS.131209798

86. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280(6):49–6. DOI: 10.1152/AJPCELL.2001.280.6.C1358

87. Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86(3):353–64. DOI: 10.1016/S0092-8674(00)80108-7

88. Wang J.Y., Sun T., Zhao X.L. et al. Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biol Ther 2008;7(5):758–66. DOI: 10.4161/CBT.7.5.5765

89. Cheng N., Brantley D., Fang W.B. et al. Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors. Neoplasia 2003;5(5):445–56. DOI: 10.1016/S1476-5586(03)80047-7

90. Frank N.Y., Schatton T., Kim S. et al. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res 2011;71(4):1474–85. DOI: 10.1158/0008-5472.CAN-10-1660

91. Serova M., Tijeras-Raballand A., Dos Santos C. et al. Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib. Oncotarget 2016;7(25):38467–86. DOI: 10.18632/ONCOTARGET.9542

92. Sun H., Zhang D., Yao Z. et al. Anti-angiogenic treatment promotes triple-negative breast cancer invasion via vasculogenic mimicry. Cancer Biol Ther 2017;18(4):205–13. DOI: 10.1080/15384047.2017.1294288

93. Brown S., Teo A., Pauklin S. et al. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 2011;20(8):1176–85. DOI: 10.1002/STEM.666

94. Topczewska J.M., Postovit L.M., Margaryan N.V. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 2006;12(8):925–32. DOI: 10.1038/NM1448

95. Jue C., Lin C., Zhisheng Z. et al. Notch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling. Oncotarget 2017;8(2):2501. DOI: 10.18632/ONCOTARGET.12388

96. Lee S.L.C., Rouhi P., Dahl Jensen L. et al. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA 2009;106(46):19485–90. DOI: 10.1073/PNAS.0909228106

97. Wei X., Chen Y., Jiang X. et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer 2021;20(1):1–18. DOI: 10.1186/s12943-020-01288-1

98. De Bock K., Mazzone M., Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 2011;8(7):393–404. DOI: 10.1038/NRCLINONC.2011.83

99. Compernolle V., Brusselmans K., Acker T. et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 2002;8(7):702–10. DOI: 10.1038/NM721

100. Postovit L.M., Abbott D.E., Payne S.L. et al. Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J Cell Biochem 2008;103(5):1369–78. DOI: 10.1002/jcb.21517

101. Jin-lu M., Han S.X., Zhu Q. et al. Role of Twist in vasculogenic mimicry formation in hypoxic hepatocellular carcinoma cells in vitro. Biochem Biophys Res Commun 2011;408(4):686–91. DOI: 10.1016/J.BBRC.2011.04.089

102. Zhang S., Li M., Zhang D. et al. Hypoxia influences linearly patterned programmed cell necrosis and tumor blood supply patterns formation in melanoma. Lab Invest 2009;89(5):575–86. DOI: 10.1038/LABINVEST.2009.20

103. Sun B., Zhang D., Zhang S. et al. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 2007;249(2):188–97. DOI: 10.1016/J.CANLET.2006.08.016

104. Quail D.F., Taylor M.J., Walsh L.A. et al. Low oxygen levels induce the expression of the embryonic morphogen Nodal. Mol Biol Cell 2011;22(24):4809–21. DOI: 10.1091/MBC.E11-03-0263

105. Luo H., Chen Z., Jin H. et al. Cyclooxygenase-2 up-regulates vascular endothelial growth factor via a protein kinase C pathway in non-small cell lung cancer. J Exp Clin Cancer Res 2011;30(1):6. DOI: 10.1186/1756-9966-30-6

106. Wu W.K.K., Yiu Sung J.J., Lee C.W. et al. Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett 2010;295(1):7–16. DOI: 10.1016/J.CANLET.2010.03.015

107. Basu G.D., Liang W.S., Stephan D.A. et al. A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells. Breast Cancer Res 2006;8(6):1–11. DOI: 10.1186/BCR1626/FIGURES/6

108. Rong X., Huang B., Qiu S. et al. Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation. Oncotarget 2016;7(51):83976–86. DOI: 10.18632/ONCOTARGET.6930


Review

For citations:


Prosekina E.A., Shapkina V.A., Karpov A.E., Fedorutseva E.Yu., Artemyeva A.S. The balance between deception and adaptation: vasculogenic mimicry as a tumor survival strategy. Advances in Molecular Oncology. 2025;12(1):14-30. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-1-14-30

Views: 164


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)