Proteomic analysis of blood plasma as a tool for personalized diagnosis of lung adenocarcinoma
- Authors: Korobkov D.N.1, Kononikhin A.S.2, Semenov S.D.2,3, Kordzaya H.L.4, Brzhozovskiy A.G.2, Bugrova A.E.2,5, Vasilieva E.Y.4,6, Kanner D.Y.1, Nikolaev E.N.2, Komissarov A.A.4,6
-
Affiliations:
- Moscow City Oncological Hospital No. 62, Moscow Healthcare Department
- Skolkovo Institute of Science and Technology
- Moscow Institute of Physics and Technology
- Moscow City Clinical Hospital named after I.V. Davydovsky
- Emanuel Institute for Biochemical Physics, Russian Academy of Science
- Russian University of Medicine
- Issue: Vol 12, No 1 (2025)
- Pages: 96-108
- Section: RESEARCH ARTICLES
- Published: 15.04.2025
- URL: https://umo.abvpress.ru/jour/article/view/762
- DOI: https://doi.org/10.17650/2313-805X-2025-12-1-96-108
- ID: 762
Cite item
Full Text
Abstract
Introduction. Lung cancer ranks second in incidence and first in mortality among other oncological pathologies. Despite significant success in the diagnosis and treatment of tumors, the five-year survival rate for lung cancer is only 19 % and has not improved significantly in recent decades, which is mainly associated with late detection of the disease. In addition, the development of metastases reduces the five-year survival rate to 6 %.
Aim. To analyze the plasma proteome of healthy volunteers and patients with lung adenocarcinoma (LAC), as one of the most common forms of lung cancer, to identify proteins that are potential biomarkers of LAC and of the presence of distant metastases.
Materials and methods. The study included 30 healthy donors and 30 patients with diagnosed LAC. using a combination of liquid chromatography and tandem mass spectrometry in combination with the method of multiple reactions monitoring, we analyzed the representation of a wide range of proteins in the blood plasma of the study participants. The data obtained were analyzed using modern methods of biological statistics, including machine learning algorithms.
Results. Based on the quantitative analysis of 118 proteins in blood plasma between the experimental groups, we proposed a panel of 12 significant proteins that are specific markers of LAC. Additionally, we identified three proteins that predict the presence of distant metastases among patients with LAC. Classifiers developed based on these protein panels make it possible to distinguish between patients with LAC and healthy controls, as well as to detect the presence of metastases among patients with LAC, with sensitivity and specificity of more than 90 %.
Conclusion. The data obtained can be used to develop new tests for LAC screening and predicting disease outcomes based on the blood plasma proteome. After additional validation and implementation into clinical practice, these tests can contribute to the early diagnosis of LAC and, as a result, increase patient survival.
Keywords
About the authors
D. N. Korobkov
Moscow City Oncological Hospital No. 62, Moscow Healthcare Department
Email: fake@neicon.ru
27 Istra, Moscow Region 143515, Russia
Russian FederationA. S. Kononikhin
Skolkovo Institute of Science and Technology
Email: fake@neicon.ru
ORCID iD: 0000-0002-2238-3458
Bld. 1, 30 Bolshoy Bul’var, Moscow 121205, Russia
Russian FederationS. D. Semenov
Skolkovo Institute of Science and Technology;Moscow Institute of Physics and Technology
Email: fake@neicon.ru
Bld. 1, 30 Bolshoy Bul’var, Moscow 121205, Russia;
Bld. 1, 1a Kerchenskaya St., Moscow 117303, Russia
Russian FederationH. L. Kordzaya
Moscow City Clinical Hospital named after I.V. Davydovsky
Email: fake@neicon.ru
ORCID iD: 0000-0001-9146-7463
11/6 Yauzskaya St., Moscow 109240, Russia
Russian FederationA. G. Brzhozovskiy
Skolkovo Institute of Science and Technology
Email: fake@neicon.ru
Bld. 1, 30 Bolshoy Bul’var, Moscow 121205, Russia
Russian FederationA. E. Bugrova
Skolkovo Institute of Science and Technology;Emanuel Institute for Biochemical Physics, Russian Academy of Science
Email: fake@neicon.ru
Bld. 1, 30 Bolshoy Bul’var, Moscow 121205, Russia
4 Kosygina St., Moscow119334, Russia
Russian FederationE. Yu. Vasilieva
Moscow City Clinical Hospital named after I.V. Davydovsky;Russian University of Medicine
Email: fake@neicon.ru
ORCID iD: 0000-0003-4111-0874
11/6 Yauzskaya St., Moscow 109240, Russia;
4 Dolgorukovskaya St., Moscow 127006, Russia
D. Yu. Kanner
Moscow City Oncological Hospital No. 62, Moscow Healthcare Department
Email: fake@neicon.ru
ORCID iD: 0000-0002-0649-6452
27 Istra, Moscow Region 143515, Russia
Russian FederationE. N. Nikolaev
Skolkovo Institute of Science and Technology
Email: e.nikolaev@skoltech.ru
ORCID iD: 0000-0001-6209-2068
Evgeniy Nikolaevich Nikolaev
Bld. 1, 30 Bolshoy Bul’var, Moscow 121205, Russia
Russian FederationA. A. Komissarov
Moscow City Clinical Hospital named after I.V. Davydovsky;Russian University of Medicine
Author for correspondence.
Email: komissarovlexa@yandex.ru
ORCID iD: 0000-0003-1018-5195
Alexey Aleksandrovich Komissarov
11/6 Yauzskaya St., Moscow 109240, Russia;
4 Dolgorukovskaya St., Moscow 127006, Russia
References
- Thandra K.C., Barsouk A., Saginala K. et al. Epidemiology of lung cancer. Contemp Oncol (Pozn) 2021;25(1):45–52. doi: 10.5114/wo.2021.103829
- Siegel R.L., Giaquinto A.N., Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024;74(1):12–49. doi: 10.3322/caac.21820
- Yurkova Yu.P., Merabishvili V.M., Levchenko E.V. Epidemiology and survival of lung cancer patients, the impact of COVID-19 (clinical and population-based study). Voprosy onkologii = Oncology Issues 2022;68(5):576–88. (In Russ.). doi: 10.37469/0507-3758-2022-68-5-576-588
- Hammer M.M., Byrne S.C., Kong C.Y. Factors influencing the false positive rate in CT lung cancer screening. Acad Radiol 2022;29(Suppl 2):S18–22. doi: 10.1016/j.acra.2020.07.040 5. Dai X., Shen L. Advances and trends in omics technology development. Front Med (Lausanne) 2022;9:911861. doi: 10.3389/fmed.2022.911861
- Baietto L., D’Avolio A., Ventimiglia G. et al. Development, validation, and routine application of a high-performance liquid chromatography method coupled with a single mass detector for quantification of itraconazole, voriconazole, and Posaconazole in human plasma. Antimicrob Agents Chemother 2010;54(8):3408–13. doi: 10.1128/AAC.01807-09
- Van Der Gugten J.G., Wong S., Holmes D.T. Quantitation of insulin analogues in serum using immunoaffinity extraction, liquid chromatography, and tandem mass spectrometry. Methods Mol Biol 2016;1378:119–30. doi: 10.1007/978-1-4939-3182-8_14
- Sepiashvili L., Kohlhagen M.C., Snyder M.R. et al. Direct detection of monoclonal free light chains in serum by use of immunoenrichment-coupled MALDI-TOF mass spectrometry. Clin Chem 2019;65(8):1015–22. doi: 10.1373/clinchem.2018.299461
- Jeong J.S., Kim S.K., Park S.R. Amino acid analysis of dried blood spots for diagnosis of phenylketonuria using capillary electrophoresis-mass spectrometry equipped with a sheathless electrospray ionization interface. Anal Bioanal Chem 2013;405(25):8063–72. doi: 10.1007/s00216-013-6999-6
- Banerjee S. Empowering clinical diagnostics with mass spectrometry. ACS Omega 2020;5(5):2041–8. doi: 10.1021/acsomega.9b03764.
- Lianidou E., Pantel K. Liquid biopsies. Genes Chromosomes Cancer 2019;58(4):219–32. doi: 10.1002/gcc.22695
- Heidrich I., Ackar L., Mossahebi Mohammadi P. et al. Liquid biopsies: potential and challenges. Int J Cancer 2021;148(3):528–45. doi: 10.1002/ijc.33217
- Kononikhin A.S., Starodubtseva N.L., Brzhozovskiy A.G. et al. Absolute quantitative targeted monitoring of potential plasma protein biomarkers: a pilot study on healthy individuals. Biomedicines 2024;12(10):2403. doi: 10.3390/biomedicines12102403
- De Groot P., Munden R.F. Lung cancer epidemiology, risk factors, and prevention. Radiol Clin North Am 2012;50(5):863–76. doi: 10.1016/j.rcl.2012.06.006
- Hoofnagle A.N., Becker J.O., Oda M.N. et al. Multiple-reaction monitoring-mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin Chem 2012;58(4):777–81. doi: 10.1373/clinchem.2011.173856
- Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424. doi: 10.3322/caac.21492
- Revel M., Daugan M.V., Sautes-Fridman C. et al. Complement system: promoter or suppressor of cancer progression? Antibodies (Basel) 2020;9(4). doi: 10.3390/antib9040057.
- Kolev M., Das M., Gerber M. et al. Inside-out of complement in cancer. Front Immunol 2022;13:931273. doi: 10.3389/fimmu.2022.931273
- Radisky E.S. Extracellular proteolysis in cancer: proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024;300(6):107347. doi: 10.1016/j.jbc.2024.107347
- Yamamoto M., Takahashi T., Serada S. et al. Overexpression of leucine-rich alpha2-glycoprotein-1 is a prognostic marker and enhances tumor migration in gastric cancer. Cancer Sci 2017;108(10):2052–60. doi: 10.1111/cas.13329
- Shinozaki E., Tanabe K., Akiyoshi T. et al. Serum leucine-rich alpha-2-glycoprotein-1 with fucosylated triantennary N-glycan: a novel colorectal cancer marker. BMC Cancer 2018;18(1):406. doi: 10.1186/s12885-018-4252-6
- Wei L.F., Weng X.F., Huang X.C. et al. IGFBP2 in cancer: pathological role and clinical significance (Review). Oncol Rep 2021;45(2):427–38. doi: 10.3892/or.2020.7892
- Arellano-Garcia M.E., Li R., Liu X. et al. Identification of tetranectin as a potential biomarker for metastatic oral cancer. Int J Mol Sci 2010;11(9):3106–21. doi: 10.3390/ijms11093106
- Mirzapoiazova T., Mambetsariev N., Lennon F.E. et al. HABP2 is a novel regulator of hyaluronan-mediated human lung cancer progression. Front Oncol 2015;5:164. doi: 10.3389/fonc.2015.00164
- Janciauskiene S., Wrenger S., Gunzel S. et al. Potential roles of acute phase proteins in cancer: why do cancer cells produce or take up exogenous acute phase protein alpha1-antitrypsin? Front Oncol 2021;11:622076. doi: 10.3389/fonc.2021.622076
- Zeng X., Hood B.L., Zhao T. et al. Lung cancer serum biomarker discovery using label-free liquid chromatography-tandem mass spectrometry. J Thorac Oncol 2011;6(4):725–34. doi: 10.1097/JTO.0b013e31820c312e
Supplementary files


