Preview

Advances in Molecular Oncology

Advanced search

Cytotoxicity mechanisms of passive anti-GD2 immunotherapy in pediatric tumors

https://doi.org/10.17650/2313-805X-2025-12-2-47-57

Abstract

Cells of neuroblastoma, soft tissue sarcomas, osteosarcoma, Ewing’s sarcoma and some other tumors in children and adults are able to express disialogangliside GD2. The introduction of anti-GD2 monoclonal antibodies into neuroblastoma treatment protocols has improved outcomes. Studies of the effectiveness of using anti-GD2 monoclonal antibodies in other tumors are also underway.

In this review, we describe the main cellular and molecular processes occurring during passive anti-GD2 immunotherapy in pediatric tumors, as well as the factors that can affect them. We concluded that the leading role belongs to antibody-dependent cellular cytotoxicity realized by natural killers via the classical mechanism with the induction of caspase-dependent apoptosis, as well as macrophages, neutrophils through phagocytosis, trogocytosis and direct cytotoxicity. Efficient phagocytosis is promoted by expression of calreticulin by tumor cells and LRP1 receptor by phagocytes, while expression of CD47 by tumor cells and its interaction with SIRPα on phagocytes contribute to evasion of phagocytosis. In parallel, activation of T-cell adaptive immune response occurs. The use of granulocyte and granulocyte-macrophage colony-stimulating factors can enhance cytotoxicity. Addition of exogenous interleukin 2 does not improve the effectiveness of treatment, and the use of interleukins 15 and 21 enhances cytotoxicity in vitro, which requires clinical trials. Complement-dependent cytotoxicity probably does not affect the therapeutic efficacy of passive anti-GD2 immunotherapy. Tumor microenvironment and molecular features of immunocompetent cells can affect anti-GD2-mediated cytotoxicity, especially when used in combination with programmed cell death 1 (PD-1) inhibitors, thus, further study of this issue is especially relevant. Anti-GD2 monoclonal antibodies directly reduce the proliferative activity and induce apoptosis of tumor cells by inhibiting signaling pathways (mainly PI3K/Akt/mTOR), transcription factors, focal adhesion complexes, and integrins. Mechanisms for inducing mitochondria-dependent cell death, which has signs of apoptosis and necrosis, are also probable.

About the Authors

M. E. Melnikov
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

Maksim Evgenievich Melnikov

2, Litovskaya St., Saint Petersburg 194100



S. A. Kulyova
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia; N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

2, Litovskaya St., Saint Petersburg 194100

68 Leningradskaya St., Pesochny Settlement, Saint Petersburg 197758



G. V. Kondratiev
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

2, Litovskaya St., Saint Petersburg 194100



M. M. Vasilyeva
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

2, Litovskaya St., Saint Petersburg 194100



O. E. Savelieva
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

2, Litovskaya St., Saint Petersburg 194100



References

1. Machy P., Mortier E., Birklé S. Biology of GD2 ganglioside: implications for cancer immunotherapy. Front Pharmacol 2023;14:1249929. DOI: 10.3389/fphar.2023.1249929

2. Philippova J., Shevchenko J., Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024;15:1371345. DOI: 10.3389/fimmu.2024.1371345

3. Nazha B., Inal C., Owonikoko T.K. Disialoganglioside GD2 Expression in solid tumors and role as a target for cancer therapy. Front Oncol 2020;10:1000. DOI: 10.3389/fonc.2020.01000

4. Yesmin F., Bhuiyan R.H., Ohmi Y. et al. Ganglioside GD2 enhances the malignant phenotypes of melanoma cells by cooperating with integrins. Int J Mol Sci 2022;23(1):423. DOI: 10.3390/ijms23010423

5. Cheung N.K., Neely J.E., Landmeier B. et al. Targeting of ganglioside GD2 monoclonal antibody to neuroblastoma. J Nucl Med 1987;28(10):1577–83.

6. Heiner J.P., Miraldi F., Kallick S. et al. Localization of GD2 specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res 1987;47(20):5377–81.

7. Chang H.R., Cordon-Cardo C., Houghton A.N. et al. Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas. Cancer 1992;70(3):633–8. DOI: 10.1002/1097-0142(19920801)70:3<633::aid cncr2820700315>3.0.co;2-f

8. Chan G.C., Chan C.M. Anti-GD2 directed immunotherapy for high-risk and metastatic neuroblastoma. Biomolecules 2022;12(3):358. DOI: 10.3390/biom12030358

9. Orsi G., Barbolini M., Ficarra G. et al. GD2 expression in breast cancer. Oncotarget 2017;8(19):31592–600. DOI: 10.18632/oncotarget.16363

10. Dobrenkov K., Ostrovnaya I., Gu J. et al. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer 2016;63(10):1780–5. DOI: 10.1002/pbc.26097

11. Kulyova S.A., Varfolomeeva S.R., Kirgizov K.I. et al. Results of chemoimmunotherapy for refractory/recurrent GD2-positive bone and soft tissue sarcomas in children. Two centers first experience. Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology and Oncology 2024;11(4):11–9. (In Russ.). DOI: 10.21682/2311-1267-2024-11-4-11-19

12. Park J.A., Cheung N.V. Targets and antibody formats for immunotherapy of neuroblastoma. J Clin Oncol 2020;38(16):1836–48. DOI: 10.1200/JCO.19.01410

13. Yu A.L., Gilman A.L., Ozkaynak M.F. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010;363(14):1324–34. DOI: 10.1056/NEJMoa0911123

14. Yu A.L., Gilman A.L., Ozkaynak M.F. et al. Long-term follow-up of a phase III study of ch14.18 (dinutuximab) + cytokine immunotherapy in children with high-risk neuroblastoma: COG Study ANBL0032. Clin Cancer Res 2021;27(8):2179–89. DOI: 10.1158/1078-0432.CCR-20-3909

15. Mody R., Yu A.L., Naranjo A. et al. Irinotecan, temozolomide, and dinutuximab with GM-CSF in сhildren with refractory or relapsed neuroblastoma: a report from the Children’s Oncology Group. J Clin Oncol 2020;38(19):2160–9. DOI: 10.1200/JCO.20.00203

16. Federico S.M., McCarville M.B., Shulkin B.L. et al. A pilot trial of humanized anti-GD2 monoclonal antibody (hu14.18k322a) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin Cancer Res 2017;23(21):6441–9. DOI: 10.1158/1078-0432.CCR-17-0379

17. Troschke-Meurer S., Zumpe M., Meißner L. et al. Chemotherapeutics used for high-risk neuroblastoma therapy improve the efficacy of anti-GD2 antibody dinutuximab beta in preclinical spheroid models. Cancers (Basel) 2023;15(3):904. DOI: 10.3390/cancers15030904

18. Thomas M., Nguyen T.H., Drnevich J. et al. Hu14.18K.322A Causes direct cell cytotoxicity and synergizes with induction chemotherapy in high-risk neuroblastoma. Cancers (Basel) 2024;16(11):2064. DOI: 10.3390/cancers16112064

19. Kulyova S.A., Varfolomeeva S.R., Kirgizov K.I. et al. A phase III, multicenter, open-label study of dinutuximab beta without/with chemotherapy at the investigator’s choice in patients under 18 years old with bone and soft tissue sarcomas with positive expression GD2 and disease progression during the first-line chemotherapy. Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology and Oncology 2024;11(2):12–20. (In Russ.). DOI: 10.21682/2311-1267-2024-11-2-12-20

20. Wang W., Erbe A.K., Hank J.A. et al. NK cell-mediated antibody dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 2015;6:368. DOI: 10.3389/fimmu.2015.00368

21. Jhunjhunwala S., Hammer C., Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021;21(5):298–312. DOI: 10.1038/s41568-021-00339-z

22. De Maria A., Bozzano F., Cantoni C., Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim) CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci USA 2011;108(2):728–32. DOI: 10.1073/pnas.1012356108

23. Wienke J., Dierselhuis M.P., Tytgat G.A.M. et al. The immune landscape of neuroblastoma: challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2021;144:123–50. DOI: 10.1016/j.ejca.2020.11.014

24. Szanto C.L., Cornel A.M., Vijver S.V., Nierkens S. Monitoring immune responses in neuroblastoma patients during therapy. Cancers (Basel) 2020;12(2):519. DOI: 10.3390/cancers12020519

25. Aktas E., Kucuksezer U.C., Bilgic S. et al. Relationship between CD107a expression and cytotoxic activity. Cell Immunol 2009;254(2):149–54. DOI: 10.1016/j.cellimm.2008.08.007

26. Siebert N., Jensen C., Troschke-Meurer S. et al. Neuroblastoma patients with high-affinity FCGR2A, -3A and stimulatory KIR 2DS2 treated by long-term infusion of anti-GD2 antibody ch14.18/ CHO show higher ADCC levels and improved event-free survival’, OncoImmunology 2016;5(11):e1235108. DOI: 10.1080/2162402X.2016.1235108

27. Erbe A.K., Diccianni M.B., Mody R. et al. KIR/KIR-ligand genotypes and clinical outcomes following chemoimmunotherapy in patients with relapsed or refractory neuroblastoma: a report from the Children’s Oncology Group. J Immunother Cancer 2023;11(2):e006530. DOI: 10.1136/jitc-2022-006530

28. Liu Y., Wang Y., Yang Y. et al. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023;8(1):104. DOI: 10.1038/s41392-023-01365-z

29. Mora J., Modak S., Kinsey J. et al. GM-CSF, G-CSF or no cytokine therapy with anti-GD2 immunotherapy for high-risk neuroblastoma. Int J Cancer 2024;154(8):1340–64. DOI: 10.1002/ijc.34815

30. Theruvath J., Menard M., Smith B.A.H. et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med 2022;28(2):333–44. DOI: 10.1038/s41591-021-01625-x

31. Martínez-Sanz P., Hoogendijk A.J., Verkuijlen P.J.J.H. et al. CD47-SIRPα checkpoint inhibition enhances neutrophil-mediated killing of dinutuximab-opsonized neuroblastoma cells. Cancers (Basel) 2021;13(17):4261. DOI: 10.3390/cancers13174261

32. Ustyanovska Avtenyuk N., Visser N., Bremer E., Wiersma V.R. The neutrophil: the underdog that packs a punch in the fight against cancer. Int J Mol Sci 2020;21(21):7820. DOI: 10.3390/ijms21217820

33. Matlung H.L., Babes L., Zhao X.W. et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep 2018;23(13):3946–59.e6. DOI: 10.1016/j.celrep.2018.05.082

34. Mora J., Castañeda A., Gorostegui M. et al. Naxitamab combined with granulocyte-macrophage colony-stimulating factor as consolidation for high-risk neuroblastoma patients in complete remission. Pediatr Blood Cancer 2021;68(10):e29121. DOI: 10.1002/pbc.29121

35. Vitale C., Bottino C., Castriconi R. Monocyte and macrophage in neuroblastoma: blocking their pro-tumoral functions and strengthening their crosstalk with natural killer cells. Cells 2023;12(6):885. DOI: 10.3390/cells12060885

36. Jeannin P., Paolini L., Adam C., Delneste Y. The roles of CSFs on the functional polarization of tumor-associated macrophages. FEBS J 2018;285(4):680–99. DOI: 10.1111/febs.14343

37. Martinez Sanz P., van Rees D.J., van Zogchel L.M.J. et al. G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment. J Immunother Cancer 2021;9(5):e002259. DOI: 10.1136/jitc-2020-002259

38. Ladenstein R., Pötschger U., Gray J. et al. Toxicity and outcome of anti-GD2 antibody ch14.18/CHO in front-line, high-risk patients with neuroblastoma: final results of the phase III immunotherapy randomisation (HR-NBL1/SIOPEN trial). JCO 2016;34(15):10500. DOI: 10.1200/JCO.2016.34.15_suppl.10500

39. Ladenstein R., Pötschger U., Valteau-Couanet D. et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol 2018;19(12):1617–29. DOI: 10.1016/S1470-2045(18)30578-3

40. Chu Y., Nayyar G., Jiang S. et al. Combinatorial immunotherapy of N-803 (IL-15 superagonist) and dinutuximab with ex vivo expanded natural killer cells significantly enhances in vitro cytotoxicity against GD2+ pediatric solid tumors and in vivo survival of xenografted immunodeficient NSG mice. J Immunother Cancer 2021;9(7):e002267. DOI: 10.1136/jitc-2020-002267

41. Imai M., Landen C., Ohta R. et al. Complement-mediated mechanisms in anti-GD2 monoclonal antibody therapy of murine metastatic cancer. Cancer Res 2005;65(22):10562–8. DOI: 10.1158/0008-5472.CAN-05-1894

42. Golay J., Taylor R.P. The role of complement in the mechanism of action of therapeutic anti-cancer mAbs. Antibodies (Basel) 2020;9(4):58. DOI: 10.3390/antib9040058

43. Meyer S., Leusen J.H., Boross P. Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. MAbs 2014;6(5):1133–44. DOI: 10.4161/mabs.29670

44. Mastrangelo S., Rivetti S., Triarico S. et al. Mechanisms, characteristics, and treatment of neuropathic pain and peripheral neuropathy associated with dinutuximab in neuroblastoma patients. Int J Mol Sci 2021;22(23):12648. DOI: 10.3390/ijms222312648

45. Barone G., Barry A., Bautista F. et al. Managing adverse events associated with dinutuximab beta treatment in patients with high risk neuroblastoma: practical guidance. Pediatr Drugs 2021;23(6):537–48. DOI: 10.1007/s40272-021-00469-9

46. Furman W.L., Federico S.M., McCarville M.B. et al. A phase II trial of Hu14.18K322A in combination with induction chemotherapy in children with newly diagnosed high-risk neuroblastoma. Clin Cancer Res 2019;25(21):6320–8. DOI: 10.1158/1078-0432.CCR-19-1452

47. Furman W.L., McCarville B., Shulkin B.L. et al. Improved outcome in children with newly diagnosed high-risk neuroblastoma treated with chemoimmunotherapy: updated results of a phase II study using hu14.18K322A. J Clin Oncol 2022;40(4):335–44. DOI: 10.1200/JCO.21.01375

48. Evers M., Stip M., Keller K. et al. Anti-GD2 IgA kills tumors by neutrophils without antibody-associated pain in the preclinical treatment of high-risk neuroblastoma. J Immunother Cancer 2021;9(10):e003163. DOI: 10.1136/jitc-2021-003163

49. Mina M., Boldrini R., Citti A. et al. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncoimmunology 2015;4(9):e1019981. DOI: 10.1080/2162402X.2015.1019981

50. Casanova J.M., Almeida J.S., Reith J.D. et al. Tumor-infiltrating lymphocytes and cancer markers in osteosarcoma: influence on patient survival. Cancers (Basel) 2021;13(23):6075. DOI: 10.3390/cancers13236075

51. Liu K.X., Joshi S. “Re-educating” tumor associated macrophages as a novel immunotherapy strategy for neuroblastoma. Front Immunol 2020;11:1947. DOI: 10.3389/fimmu.2020.01947

52. Dondero A., Pastorino F., Della Chiesa M. et al. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology 2015;5(1):e1064578. DOI: 10.1080/2162402X.2015.1064578

53. Davis K.L., Fox E., Merchant M.S. et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol 2020;21(4):541–50. DOI: 10.1016/S1470-2045(20)30023-1

54. Davis K.L., Fox E., Isikwei E. et al. A Phase I/II trial of nivolumab plus ipilimumab in children and young adults with relapsed/ refractory solid tumors: a Children’s Oncology Group Study ADVL1412. Clin Cancer Res 2022;28(23):5088–97. DOI: 10.1158/1078-0432.CCR-22-2164

55. Song M., Huang Y., Hong Y. et al. PD-L1-expressing natural killer cells predict favorable prognosis and response to PD-1/PD-L1 blockade in neuroblastoma. Oncoimmunology 2023;13(1):2289738. DOI: 10.1080/2162402X.2023.2289738

56. Ehlert K., Hansjuergens I., Zinke A. et al. Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma. J Immunother Cancer 2020;8(1):e000540. DOI: 10.1136/jitc-2020-000540

57. Siebert N., Zumpe M., Jüttner M. et al. PD-1 blockade augments anti-neuroblastoma immune response induced by anti-GD2 antibody ch14.18/CHO. Oncoimmunology 2017;6(10):e1343775. DOI: 10.1080/2162402X.2017.1343775

58. Xu H., Cheng M., Guo H. et al. Retargeting T cells to GD2 pentasaccharide on human tumors using bispecific humanized antibody. Cancer Immunol Res 2015;3(3):266–77. DOI: 10.1158/2326-6066.CIR-14-0230-T

59. Zirngibl F., Ivasko S.M., Grunewald L. et al. GD2-directed bispecific trifunctional antibody outperforms dinutuximab beta in a murine model for aggressive metastasized neuroblastoma. J Immunother Cancer 2021;9(7):e002923. DOI: 10.1136/jitc-2021-002923

60. Ivasko S.M., Anders K., Grunewald L. et al. Combination of GD2 directed bispecific trifunctional antibody therapy with Pd-1 immune checkpoint blockade induces anti-neuroblastoma immunity in a syngeneic mouse model. Front Immunol 2023;13:1023206. DOI: 10.3389/fimmu.2022.1023206

61. Stigliani S., Croce M., Morandi F. et al. Expression of FOXP3, CD14, and ARG1 in neuroblastoma tumor tissue from high-risk patients predicts event-free and overall survival. Biomed Res Int 2015;2015:347867. DOI: 10.1155/2015/347867

62. Sait S., Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev Anticancer Ther 2017;17(10):889–904. DOI: 10.1080/14737140.2017.1364995

63. Durbas M., Horwacik I., Boratyn E. et al. GD2 ganglioside specific antibody treatment downregulates PI3K/Akt/mTOR signaling network in human neuroblastoma cell lines. Int J Oncol 2015;47(3):1143–59. DOI: 10.3892/ijo.2015.3070

64. Liu B., Wu Y., Zhou Y., Peng D. Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells. PLoS One 2014;9(4):e93576. DOI: 10.1371/journal.pone.0093576

65. Zhu W., Mao X., Wang W. et al. Anti-ganglioside GD2 monoclonal antibody synergizes with cisplatin to induce endoplasmic reticulum associated apoptosis in osteosarcoma cells. Pharmazie 2018;73(2):80–6. DOI: 10.1691/ph.2018.7836

66. Fisher J.P., Flutter B., Wesemann F. et al. Effective combination treatment of GD2-expressing neuroblastoma and Ewing’s sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells. Oncoimmunology 2015;5(1):e1025194. DOI: 10.1080/2162402X.2015.1025194

67. Horwacik I., Rokita H. Modulation of interactions of neuroblastoma cell lines with extracellular matrix proteins affects their sensitivity to treatment with the anti-GD2 ganglioside antibody 14G2a. Int J Oncol 2017;50(5):1899–914. DOI: 10.3892/ijo.2017.3959

68. Doronin I.I., Vishnyakova P.A., Kholodenko I.V. et al. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer 2014;14:295. DOI: 10.1186/1471-2407-14-295

69. Sorice M., Matarrese P., Tinari A. et al. Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J 2009;23(10):3298–308. DOI: 10.1096/fj.08-128140

70. Tibbetts R., Yeo K.K., Muthugounder S. et al. Anti-disialoganglioside antibody internalization by neuroblastoma cells as a mechanism of immunotherapy resistance. Cancer Immunol Immunother 2022;71(1):153–64. DOI: 10.1007/s00262-021-02963-y


Review

For citations:


Melnikov M.E., Kulyova S.A., Kondratiev G.V., Vasilyeva M.M., Savelieva O.E. Cytotoxicity mechanisms of passive anti-GD2 immunotherapy in pediatric tumors. Advances in Molecular Oncology. 2025;12(2):47-57. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-2-47-57

Views: 76


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)