Детерминанты ферроптоза – потенциальные предикторы и терапевтические мишени для острого миелоидного лейкоза
https://doi.org/10.17650/2313-805X-2025-12-2-58-67
Аннотация
Ферроптоз (ФП) – один из видов неапоптотической программируемой гибели клеток, связанной с железозависимым перекисным окислением липидов. при нем наблюдаются снижение активности глутатионпероксидазы 4 (GPX4), необходимой для подавления перекисного окисления липидов, накопление редокс-активного железа и окисление фосфолипидов клеточной мембраны, содержащих полиненасыщенные жирные кислоты. ФП играет главную роль в механизмах старения организма человека, регулируя дегенерацию – основную причину повреждения тканей и органной недостаточности. Он вносит значительный вклад в развитие возрастных патологий, включая нейроде генеративные состояния, сердечно-сосудистые заболевания и рак. Особый интерес представляет участие ФП в патогенезе возрастзависимых онкологических заболеваний, включая острый миелоидный лейкоз (ОМЛ). проведенные ранее исследования показывают, что ФП в значительной степени регулирует чувствительность клеток ОМЛ к химио терапевтическим препаратам, а некоторые из генов, связанные с ним, играют жизненно важную роль в онкогенезе ОМЛ. кроме того, представляют интерес исследования влияния иммунной инфильтрации на ФП и прогноз ОМЛ. Таким образом, углубленное изучение уникального механизма ФП при ОМЛ может дать новые представления о диагностике и лечении этого заболевания.
В данном обзоре проанализированы основные регуляторные молекулярные механизмы ФП и его взаимосвязь с возникновением и развитием ОМЛ. кроме того, обобщены последние достижения в изучении роли ФП в прогнозе и терапии данной патологии.
Ключевые слова
Об авторах
В. Е. ШевченкоРоссия
Валерий Евгеньевич Шевченко
115522 Москва, Каширское шоссе, 24
Т. И. Кушнир
Россия
115522 Москва, Каширское шоссе, 24
М. В. Гудкова
Россия
115522 Москва, Каширское шоссе, 24
Н. Е. Арноцкая
Россия
115522 Москва, Каширское шоссе, 24
Список литературы
1. Shallis R.M., Wang R., Davidoff A. et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev 2019;36:70–87. DOI: 10.1016/j.blre.2019.04.005
2. Medinger M., Heim D., Halter J.P. et al. Diagnostik und therapie der akuten myeloischen leukämie. Ther Umsch 2019;76(9):481–6. DOI: 10.1024/0040-5930/a001126
3. Pelcovits A., Niroula R. Acute myeloid leukemia: a review. R I Med J (2013) 2020;103(3):38–40.
4. Döhner H., Wei A.H., Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol 2021;18(9):577–90. DOI: 10.1038/s41571-021-00509-w
5. Ren Y., Mao X., Xu H. et al. Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance. Cell Mol Life Sci 2023;80(9):263. DOI: 10.1007/s00018-023-04907-4
6. Zhang C., Liu X., Jin S. et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 2022;21(1):47. DOI: 10.1186/s12943-022-01530-y
7. Mou Y., Wang J., Wu J. et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 2019;12(1):34. DOI: 10.1186/s13045-019-0720-y
8. Lei G., Zhuang L., Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 2022;22(7):381–96. DOI: 10.1038/s41568-022-00459-0
9. Liang C., Zhang X., Yang M., Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 2019;31(51):e1904197. DOI: 10.1002/adma.201904197
10. Han C., Zheng J., Li F. et al. Novel prognostic signature for acute myeloid leukemia: bioinformatics analysis of combined CNV-driven and ferroptosis-related genes. Front Genet 2022;13:849437. DOI: 10.3389/fgene.2022.849437
11. Yu Y., Meng Y., Xu X. et al. A ferroptosis inducing and leukemic cell targeting drug nanocarrier formed by redox responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano 2023;17(4):3334–45. DOI: 10.1021/acsnano.2c06313
12. Борисова Л.М., Осипов В.Н., Голубева И.С. и др. Производные 3-гидроксихиназолина, аналоги эрастина, индуцируют ферроптоз в клетках карциномы молочной железы. Успехи молекулярной онкологии 2022;9(1):48–56. DOI: 10.17650/2313-805X-2022-9-1-48-56
13. Liang D., Minikes A.M., Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 2022;82(12): 2215–27. DOI: 10.1016/j.molcel.2022.03.022
14. Balihodzic A., Prinz F., Dengler M.A. et al. Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ 2022;29(6):1094–106. DOI: 10.1038/s41418-022-00998-x
15. Шевченко В.Е., Никифорова З.Н., Кушнир Т.И. и др.. Детерминанты ферроптоза – потенциальные терапевтические мишени стволовых клеток глиобластомы. Успехи молекулярной онкологии 2022;9(3):60–8. DOI: 10.17650/2313-805X-2022-9-3-60-68
16. Li J., Cao F., Yin H.L. et al. Ferroptosis: past, present and future. Cell Death Dis 2020;11:88. DOI: 10.1038/s41419-020-2298-2
17. Chen X., Li J., Kang R. et al. Ferroptosis: machinery and regulation. Autophagy 2021;17(9):2054–81. DOI: 10.1080/15548627.2020.1810918
18. Su Y., Zhao B., Zhou L. et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 2020;483:127–36. DOI: 10.1016/j.canlet.2020.02.015
19. Tang D., Chen X., Kang R. et al. Ferroptosis: molecular mechanisms and health implications. Cell Res 2021;31(2):107–25. DOI: 10.1038/s41422-020-00441-1
20. Liu Y., Wan Y., Jiang Y. et al. GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023;1878(3):188890. DOI: 10.1016/j.bbcan.2023.188890
21. Forcina G.C., Dixon S.J. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 2019;19(18):e1800311. DOI: 10.1002/pmic.201800311
22. Xing K., Bian X., Shi D. et al. miR-612 enhances RSL3-induced ferroptosis of hepatocellular carcinoma cells via mevalonate pathway. J Hepatocell Carcinoma 2023;10:2173–85. DOI: 10.2147/JHC.S433332
23. Ou M., Jiang Y., Ji Y. et al. Role and mechanism of ferroptosis in neurological diseases. Mol Metab 2022;61:101502. DOI: 10.1016/j.molmet.2022.101502
24. Noe R., Inglese N., Romani P. et al. Organic selenium induces ferroptosis in pancreatic cancer cells. Redox Biol 2023;68:102962. DOI: 10.1016/j.redox.2023.102962
25. Zheng J., Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab 2020;32(6):920–37. DOI: 10.1016/j.cmet.2020.10.011
26. Park E., Chung S.W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 2019;10(11):822. DOI: 10.1038/s41419-019-2064-5
27. Stockwell B.R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022;185(14):2401–21. DOI: 10.1016/j.cell.2022.06.003
28. Fuhrmann D.C., Brune B. A graphical journey through iron metabolism, microRNAs and hypoxia in ferroptosis. Redox Biol 2022;54:102365. DOI: 10.1016/j.redox.2022.102365
29. Bayir H., Dixon S.J., Tyurina Y.Y. et al. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023;19(5):315–36. DOI: 10.1038/s41581-023-00689-x
30. Grignano E., Birsen R., Chapuis N. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in leukemic cells. Front Oncol 2020;10:586530. DOI: 10.3389/fonc.2020.586530
31. Zeng F., Nijiati S., Tang L. et al. Ferroptosis detection: from approaches to applications. Angew Chem Int Ed 2023;62(35):e202300379. DOI: 10.1002/anie.202300379
32. Chen X., Kang R., Kroemer G. et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 2021;18(5):280–96. DOI: 10.1038/s41571-020-00462-0
33. Koppula P., Zhuang L., Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021;12(8):599–620. DOI: 10.1007/s13238-020-00789-5
34. Sun X., Ou Z., Xie M. et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 2015;34(45):5617–25. DOI: 10.1038/onc.2015.32
35. Xia J., Si H., Yao W. et al. Research progress on the mechanism of ferroptosis and its clinical application. Exp Cell Res 2021;409(2):112932. DOI: 10.1016/j.yexcr.2021.112932
36. Liu J., Zhang C., Wang J. et al. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci 2020;21(21):8387. DOI: 10.3390/ijms21218387
37. Lei P., Bai T., Sun Y. Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol 2019;10:139. DOI: 10.3389/fphys.2019.00139
38. Xu R., Wang W., Zhang W. Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov 2023;9(1):197. DOI: 10.1038/s41420-023-01517-8
39. Wang H., Guo M., Wei H. et al. Targeting p53 pathways: mechanisms, structures and advances in therapy. Signal Transduct Target Ther 2023;8(1):92. DOI: 10.1038/s41392-023-01347-1
40. Liu Y., Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ 2022;29(5):895–910. DOI: 10.1038/s41418-022-00943-y
41. Gong D., Chen M., Wang Y. et al. Role of ferroptosis on tumor progression and immunotherapy. Cell Death Discov 2022;8(1):427. DOI: 10.1038/s41420-022-01218-8
42. Liu Y., Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022;85:4–32. DOI: 10.1016/j.semcancer.2021.03.010
43. Gao Y., Zhang H., Wang J. et al. Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-κB/HMGB1 and Nrf2/HO-1 pathways. Int Immunopharmacol 2023;114:109619. DOI: 10.1016/j.intimp.2022.109619
44. Ursini F., Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 2020;152:175–85. DOI: 10.1016/j.freeradbiomed.2020.02.027
45. Li D., Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 2020;5(1):108. DOI: 10.1038/s41392-020-00216-5
46. Pope L.E., Dixon S.J. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol 2023;33(12):1077–87. DOI: 10.1016/j.tcb.2023.05.003
47. Zhao L., Zhou X., Xie F. et al. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond) 2022;42(2):88–116. DOI: 10.1002/cac2.12250
48. Song X., Zhu S., Chen P. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity. Curr Biol 2018;28(15):2388–99. DOI: 10.1016/j.cub.2018.05.094
49. Farge T., Saland E., de Toni F. et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov 2017;7(7):716–35. DOI: 10.1158/2159-8290.CD-16-0441
50. Auberger P., Favreau C., Savy C. et al. Emerging role of glutathione peroxidase 4 in myeloid cell lineage development and acute myeloid leukemia. Cell Mol Biol Lett 2024;29(1):98. DOI: 10.1186/s11658-024-00613-6
51. Zhong X., Zhang Z., Shen H. et al. Hepatic NF-κB-inducing kinase and inhibitor of NF-κB kinase subunit α promote liver oxidative stress, ferroptosis, and liver injury. Hepatol Commun 2021;5(10):1704–20. DOI: 10.1002/hep4.1757
52. Rushworth S.A., Zaitseva L., Murray M.Y. et al. High Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies chemo-resistance. Blood 2012;120(26):5188–98. DOI: 10.1182/blood-2012-04-422121
53. Akiyama H., Zhao R., Ostermann L.B. et al. Mitochondrial regulation of GPX4 inhibition-mediated ferroptosis in acute myeloid leukemia. Leukemia 2024;38(4):729–40. DOI: 10.1038/s41375-023-02117-2
54. Pabst T., Kortz L., Fiedler G.M. et al. The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features. BBA Clin 2017;7:105–14. DOI: 10.1016/j.bbacli.2017.03.002
55. Yin Z., Li F., Zhou Q. et al. A ferroptosis-related gene signature and immune infiltration patterns predict the overall survival in acute myeloid leukemia patients. Front Mol Biosci 2022;9:959738. DOI: 10.3389/fmolb.2022.959738
56. Prada-Arismendy J., Arroyave J.C., Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev 2017;31(1):63–76. DOI: 10.1016/j.blre.2016.08.005
57. Han C., Zheng J., Li F. et al. Novel prognostic signature for acute myeloid leukemia: bioinformatics analysis of combined CNV-driven and ferroptosis-related genes. Front Genet 2022;13:849437. DOI: 10.3389/fgene.2022.849437
58. Jiang B., Zhao Y., Shi M. et al. DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma. Dig Dis Sci 2020;65(7):1999–2008. DOI: 10.1007/s10620-019-05929-4
59. Meng E., Shevde L.A., Samant R.S. Retraction: Emerging roles and underlying molecular mechanisms of DNAJB6 in cancer. Oncotarget 2023;14:669. DOI: 10.18632/oncotarget.28439
60. Yan X.S., Sun Y.J., Du J. et al. Effects of ferroptosis-related gene HSPB1 on acute myeloid leukaemia. Int J Lab Hematol 2024;46(5):899–909. DOI: 10.1111/ijlh.14319
61. Ma Z., Ye W., Huang X. et al. The ferroptosis landscape in acute myeloid leukaemia. Aging (Albany NY) 2023;15(22):13486–503. DOI: 10.18632/aging.205257
62. Sun Q., Liu D., Cui W. et al. Cholesterol-mediated ferroptosis suppression reveals essential roles of coenzyme Q and squalene. Commun Biol 2023;6(1):1108. DOI: 10.1038/s42003-023-05477-8
63. Shi J., Wu P., Sheng L. et al. Ferroptosis-related gene signature predicts the prognosis of papillary thyroid carcinoma. Cancer Cell Int 2021;21(1):669. DOI: 10.1186/s12935-021-02389-7
64. Bhanot H., Weisberg E.L., Reddy M.M. et al. Acute myeloid leukemia cells require 6-phosphogluconate dehydrogenase for cell growth and NADPH-dependent metabolic reprogramming. Oncotarget 2017;8(40):67639–50. DOI: 10.18632/oncotarget.18797
65. Song Y., Tian S., Zhang P. et al. Construction and validation of a novel ferroptosis-related prognostic model for acute myeloid leukaemia. Front Genet 2021;12:708699. DOI: 10.3389/fgene.2021.708699
66. Dixon S.J., Patel D.N., Welsch M. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic-reticulum stress and ferroptosis. eLife 2014;3:e02523. DOI: 10.7554/eLife.02523
67. Zhang X., Peng T., Li C. et al. Inhibition of CISD1 alleviates mitochondrial dysfunction and ferroptosis in mice with acute lung injury. Int Immunopharmacol 2024;130:111685. DOI: 10.1016/j.intimp.2024.111685
68. Xie Y., Zhu S., Song X. et al. The tumour suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 2017;20(7):1692–704. DOI: 10.1016/j.celrep.2017.07.055
69. Kang R., Kroemer G., Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 2019;133:162–8. DOI: 10.1016/j.freeradbiomed.2018.05.074
70. Shin D., Kim E.H., Lee J. et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med 2018;129:454–62. DOI: 10.1016/j.freeradbiomed.2018.10.426
71. Wei J., Nai G.Y., Dai Y. et al. Dipetidyl peptidase-4 and transferrin receptor serve as prognostic biomarkers for acute myeloid leukemia. Ann Transl Med 2021;9(17):1381. DOI: 10.21037/atm-21-3368
72. Wei J., Xie Q., Liu X. et al. Identification of the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med 2020;8(11):678. DOI: 10.21037/atm20 3296
73. Zhang L., Song A., Yang Q.C. et al. Integration of AIEgens into covalent organic frameworks for pyroptosis- and ferroptosis-primed cancer immunotherapy. Nat Commun 2023;14(1):5355. DOI: 10.1038/s41467-023-41121-z
74. Wang J., Zhuo Z., Wang Y. et al. Identification and validation of a prognostic risk-scoring model based on ferroptosis-associated cluster in acute myeloid leukaemia. Front Cell Dev Biol 2021;9:800267. DOI: 10.3389/fcell.2021.800267
75. Ruvolo P.P., Ma H., Ruvolo V.R. et al. LGALS1 acts as a pro-survival molecule in AML. Biochim Biophys Acta Mol Cell Res 2020;1867(10):118785. DOI: 10.1016/j.bbamcr.2020.118785
76. Zhu W., Liu D., Lu Y. et al. PHKG2 regulates RSL3-induced ferroptosis in Helicobacter pylori-related gastric cancer. Arch Biochem Biophys 2023;740:109560. DOI: 10.1016/j.abb.2023.109560
77. Sabatier M., Birsen R., Lauture L. et al. C/EBPα confers dependence on fatty-acid anabolic pathways and vulnerability to lipid oxidative-stress-induced ferroptosis in FLT3-mutant leukaemia. Cancer Discov 2023;13(7):1720–47. DOI: 10.1158/2159-8290.CD-22-0411
78. Chen X., Hu S., Han Y. et al. Ferroptosis-related STEAP3 acts as predictor and regulator in diffuse large B-cell lymphoma through immune infiltration. Clin Exp Med 2023;23(6):2601–17. DOI: 10.1007/s10238-023-00996-4
79. Dai E., Han L., Liu J. et al. Ferroptotic damage promotes pancreatic tumourigenesis through a TMEM173/STING dependent DNA-sensor pathway. Nat Commun 2020;11(1):6339. DOI: 10.1038/s41467-020-20154-8
80. Sadeghi M., Moslehi A., Kheiry H. et al. The sensitivity of acute myeloid leukaemia cells to cytarabine is increased by suppressing the expression of heme oxygenase-1 and hypoxia-inducible factor 1α. Cancer Cell Int 2024;24(1):217. DOI: 10.1186/s12935-024-03393-3
81. Chen X., Song X., Li J. et al. Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy 2023;19(1):54–74. DOI: 10.1080/15548627.2022.2059170
82. Zhang H., Sun C., Sun Q. et al. Susceptibility of acute myeloid leukaemia cells to ferroptosis and evasion strategies. Front Mol Biosci 2023;10:1275774. DOI: 10.3389/fmolb.2023.1275774
83. Liu J., Kang R., Tang D. Signaling pathways and defence mechanisms of ferroptosis. FEBS J 2022;289(22):7038–50. DOI: 10.1111/febs.16059
84. Cui J., Wang Y., Tian X. et al. LPCAT3 is transcriptionally regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to determine ferroptosis sensitivity. Antioxid Redox Signal 2023;39(7–9): 491–511. DOI: 10.1089/ars.2023.0237
85. Strickland S.A., Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol 2022;171:103607. DOI: 10.1016/j.critrevonc.2022.103607
86. Roberts D., Langston A.A., Heffner L.T. Acute myeloid leukemia in young adults: does everyone need a transplant? J Oncol Pract 2019;15(6):315–20. DOI: 10.1200/JOP.18.00574
87. Li Q., Su R., Bao X. et al. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater 2022;144:109–20. DOI: 10.1016/j.actbio.2022.03.030
88. Diao J., Jia Y., Dai E. et al. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024;23(1):89. DOI: 10.1186/s12943-024-01999-9
89. Su R., Dong L., Li Y. et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 2020;38(1):79–96. DOI: 10.1016/j.ccell.2020.04.017
90. Wen Q., Liu J., Kang R. et al. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun 2019;510(2):278–83. DOI: 10.1016/j.bbrc.2019.01.090
91. Chen G.Q., Benthani F.A., Wu J. et al. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ 2020;27(1):242–54. DOI: 10.1038/s41418-019-0352-3
92. Zhu H.Y., Huang Z.X., Chen G.Q. et al. Typhaneoside prevents acute myeloid leukemia through suppressing proliferation and inducing ferroptosis associated with autophagy. Biochem Biophys Res Commun 2019;516(4):1265–71. DOI: 10.1016/j.bbrc.2019.06.070
93. Lai X., Sun Y., Zhang X. et al. Honokiol induces ferroptosis by upregulating HMOX1 in acute myeloid leukemia cells. Front Pharmacol 2022;13:897791. DOI: 10.3389/fphar.2022.897791
94. Bruedigam C., Porter A.H., Song A. et al. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat Cancer 2024;5(1):47–65. DOI: 10.1038/s43018-023-00653-5
Рецензия
Для цитирования:
Шевченко В.Е., Кушнир Т.И., Гудкова М.В., Арноцкая Н.Е. Детерминанты ферроптоза – потенциальные предикторы и терапевтические мишени для острого миелоидного лейкоза. Успехи молекулярной онкологии. 2025;12(2):58-67. https://doi.org/10.17650/2313-805X-2025-12-2-58-67
For citation:
Shevchenko V.E., Kushnir T.I., Gudkova M.V., Arnotskaya N.E. Ferroptosis determinants – potential predictors and therapeutic targets for acute myeloid leukemia. Advances in Molecular Oncology. 2025;12(2):58-67. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-2-58-67