Preview

Advances in Molecular Oncology

Advanced search

MelCher5k/BRAF+ subcutaneous human melanoma xenograft with CD20 expression

https://doi.org/10.17650/2313-805X-2025-12-2-68-76

Abstract

Introduction. Metastatic melanoma of the skin (mMC) is characterized by an extremely unfavorable prognosis of survival. Significant remission of mMK is associated with the use of vemurafenib, which blocks the proliferation of cells with a mutation in the BRAF gene. However, after its cancellation, relapse develops rapidly, determining the need for continued treatment. The search for another therapeutic target in the primary mMC led to a small subpopulation of stem-like CD20 antigen-expressing cells. Pilot clinical trials of CD20-blocking rituxibam did not yield the desired result, which we interpreted as a lack of control of CD20 expression in recurrent cells, which is available only in vivo in an adequate human model of recurrent mMK / BRAF+ with high CD20 expression.

Aim. To create an in vivo model of recurrent human mMC / BRAF+ with control of the representation of a subpopulation of cells with CD20 expression.

Materials and methods. Vemurafenib (Roche, Switzerland), human melanoma cell culture MelCher5k / BRAF+, male Balb / c nude immunodeficient mice weighing 20–23 g breeding and maintenance at the N. N. Blokhin National Medical Research Center of Oncology were used. Mice with a transplanted tumor (n = 12) were divided into 2 groups: without the drug (control) and with the drug (vemurafenib). A comparative assessment of the growth dynamics of tumor nodes in the groups was carried out according to the volume ratio using the standard T / C (treatment / control) criterion, expressed as a percentage. The dynamics of the expression of S100, CD20, and CD45 markers was evaluated by flow cytofluorometry before the start of vemurafenib administration and at the end of follow-up.

Results. According to the data obtained, in mice with MelCher5k / BRAF+ treated with vemurafenib from days 7 to 21, tumor reduction was observed from day 10 with complete remission by day 20. Relapses with the development of a tumor node at the implantation site (renewed growth of melanoma cells) occurred on day 28 (a week after drug withdrawal), and then the tumor progressed rapidly over the course of 34–41 days. In mice treated with vemurafenib, the proportion of CD20+ cells in the new focus was 35 %, which was 1.82 times higher than the proportion of CD20+ cells in the tumor of mice not treated with this drug (19 %). At the same time, the cells of the newly emerged tumor expressed the melanoma marker S100+ and did not express CD45.

Conclusion. Thus, in vivo, using the MelCher5k / BRAF+ model, it was shown that in a recurrent tumor node developing after the use of vemurafenib, the proportion of stem-like cells expressing CD20 significantly increases. These data suggest that it is advisable to use the model to evaluate the clinical prospects of CD20-targeted agents capable of prolonging remission after vemurafenib withdrawal in patients with recurrent melanoma.

About the Authors

I. N. Mikhaylova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
Russian Federation

Irina Nikolaevna Mikhailova

24 Kashirskoe Shosse, Moscow 115522

1 Partizana Zheleznyaka St., Krasnoyarsk 660022



H. M. Treshalina
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



S. Sh. Karshieva
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



D. A. Khochenkov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



N. V. Andronova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



I. Zh. Shubina
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



M. V. Kiselevskiy
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



References

1. Marti J.L.G., Hyder T., Nasrazadani A. et al. The evolving landscape of HER2-directed breast cancer therapy. Curr Treat Options Oncol 2020;21(10):82. DOI: 10.1007/s11864-020-00780-6

2. Tarantino P., Viale G., Press M.F. et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann Oncol 2023;34(8):645–59. DOI: 10.1016/j.annonc.2023.05.008

3. Ferguson K.M. Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 2008;37:353–73. DOI: 10.1146/annurev.biophys.37.032807.125829

4. Li X., Zhao L., Chen C. et al. Can EGFR be a therapeutic target in breast cancer? Biochim Biophys Acta Rev Cancer 2022;1877(5):188789. DOI: 10.1016/j.bbcan.2022.188789

5. Raghav K.P.S., Moasser M.M. Molecular pathways and mechanisms of HER2 in cancer therapy. Clin Cancer Res 2023;29(13):2351–61. DOI: 10.1158/1078-0432.CCR-22-0283

6. Lyu H., Han A., Polsdofer E. et al. Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm Sin B 2018;8(4):503–10. DOI: 10.1016/j.apsb.2018.05.010

7. Kilroy M.K., Park S., Feroz W. et al. HER3 alterations in сancer and potential clinical implications. Cancers (Basel) 2022;14(24):6174. DOI: 10.3390/cancers14246174

8. Papa F., Grinda T., Rassy E. et al. Long road towards effective HER3 targeting in breast cancer. Cancer Treat Rev 2024;129:102786. DOI: 10.1016/j.ctrv.2024.102786

9. Uliano J., Corvaja C., Curigliano G., Tarantino P. Targeting HER3 for cancer treatment: a new horizon for old target. ESMO Open 2023;8(1):100790. DOI: 10.1016/j.esmoop.2023.100790

10. Hoxhaj G., Manning B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020;20(2):74–88. DOI: 10.1038/s41568-019-0216-7

11. Mishra R., Alanazi S., Yuan L. et al. Activating HER3 mutations in breast cancer. Oncotarget 2018;9(45):27773–88. DOI: 10.18632/oncotarget.25576

12. Murugan A.K., Grieco M., Tsuchida N. RAS mutations in human cancers: roles in precision medicine. Semin Cancer Biol 2019;59:23–35. DOI: 10.1016/j.semcancer.2019.06.007

13. Kamian S., Ashoori H., Vahidian F., Davoudi S. The relevance of common K-RAS gene mutations and K-RAS mRNA expression with clinicopathological findings and survival in breast cancer. Asian Pac J Cancer Prev 2023;24(3):909–14. DOI: 10.31557/APJCP.2023.24.3.909

14. Banys-Paluchowski M., Milde-Langosch K., Fehm T. et al. Clinical relevance of H-RAS, K-RAS, and N-RAS mRNA expression in primary breast cancer patients. Breast Cancer Res Treat 2020;179(2):403–14. DOI: 10.1007/s10549-019-05474-8

15. Hossain M.A. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024;979:176727. DOI: 10.1016/j.ejphar.2024.176727

16. Wang L., Lu Q., Jiang K. et al. BRAF V600E mutation in triple negative breast cancer: a case report and literature review. Oncol Res Treat 2022;45(1–2):54–61. DOI: 10.1159/000520453

17. Khojasteh Poor F., Keivan M., Ramazii M. et al. Mini review: the FDA-approved prescription drugs that target the MAPK signaling pathway in women with breast cancer. Breast Dis 2021;40(2):51–62. DOI: 10.3233/BD-201063

18. Miricescu D., Totan A., Stanescu-Spinu I.I. et al. PI3K/AKT/ mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci 2020;22(1):173. DOI: 10.3390/ijms22010173

19. Hinz N., Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019;17(1):154. DOI: 10.1186/s12964-019-0450-3

20. Nunnery S.Е., Mayer I.A. Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 2020;80(16):1685–97. DOI: 10.1007/s40265-020-01394-w

21. Shen L.S., Jin X.Y., Wang X.M. et al. Advances in endocrine and targeted therapy for hormone-receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. Chin Med J 2020;133:1099–108. DOI: 10.1097/CM9.0000000000000745

22. Mosele F., Stefanovska B., Lusque A. et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol 2020;31(3):377–86. DOI: 10.1016/j.annonc.2019.11.006

23. Ertay A., Liu H., Liu D. et al. WDHD1 is essential for the survival of PTEN-inactive triple-negative breast cancer. Cell Death Dis 2020;11(11):1001. DOI: 10.1038/s41419-020-03210-5

24. Hanker A.B., Sudhan D.R., Arteaga C.L. Overcoming endocrine resistance in breast cancer. Cancer Cell 2020;37(4):496–513. DOI: 10.1016/j.ccell.2020.03.009

25. Endicott S.J., Ziemba Z.J., Beckmann L.J. et al. Inhibition of class I PI3K enhances chaperone-mediated autophagy. J Cell Biol 2020;219(12):202001031. DOI: 10.1083/jcb.202001031

26. Rugo H.S., Raskina K., Schrock A.B. et al. Biology and targetability of the extended spectrum of PIK3CA mutations detected in breast carcinoma. Clin Cancer Res 2023;29(6):1056–67. DOI: 10.1158/1078-0432.CCR-22-2115

27. Riobo-Del Galdo N.A., Montero Á.L., Wertheimer E.V. Role of Hedgehog signaling in breast cancer: pathogenesis and therapeutics. Cells 2019;8(4):375. DOI: 10.3390/cells8040375

28. Habib J.G., O’Shaughnessy J.A. The hedgehog pathway in triple-negative breast cancer. Cancer Med 2016;5(10):2989–3006. DOI: 10.1002/cam4.833

29. Patel D.K., Kesharwani R., Verma A. et al. Scope of Wnt signaling in the precise diagnosis and treatment of breast cancer. Drug Discov Today 2023;28(7):103597. DOI: 10.1016/j.drudis.2023.103597

30. Xu X., Zhang M., Xu F., Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020;19(1):165. DOI: 10.1186/s12943-020-01276-5 31. Harbeck N., Penault-Llorca F., Cortes J. et al. Breast cancer. Nat Rev Dis Primers 2019;5(1):66. DOI: 10.1038/s41572-019-0111-2

31. Theodosiou A., Arhondakis S., Baumann M., Kossida S. Evolutionary scenarios of Notch proteins. Mol Biol Evol 2009;26(7):1631–40. DOI: 10.1093/molbev/msp075

32. Krishna B.M., Jana S., Singhal J. et al. Notch signaling in breast cancer: from pathway analysis to therapy. Cancer Lett 2019;461:123–31. DOI: 10.1016/j.canlet.2019.07.012

33. Huang P., Chen A., He W. et al. BMP-2 induces EMT and breast cancer stemness through Rb and CD44. Cell Death Discov 2017;3:17039. DOI: 10.1038/cddiscovery.2017.39

34. Nilendu P., Kumar A., Kumar A. et al. Breast cancer stem cells as last soldiers eluding therapeutic burn: a hard nut to crack. Int J Cancer 2018;142(1):7–17. DOI: 10.1002/ijc.30898


Review

For citations:


Mikhaylova I.N., Treshalina H.M., Karshieva S.Sh., Khochenkov D.A., Andronova N.V., Shubina I.Zh., Kiselevskiy M.V. MelCher5k/BRAF+ subcutaneous human melanoma xenograft with CD20 expression. Advances in Molecular Oncology. 2025;12(2):68-76. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-2-68-76

Views: 62


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)