Effect of the reverse transcriptase inhibitor efavirenz on 5-azacytidine-induced LINE1 long interspersed repeat expression and genetic instability in acute myeloid leukemia cells
- Authors: Magomedova K.M.1, Antonova I.A.1, Strelkov M.S.1,2, Nurtdinova V.A.1, Cheshchevik V.T.3, Kirsanov K.I.1,2, Belitsky G.A.1, Yakubovskaya M.G.1,2, Vlasova O.A.1
-
Affiliations:
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
- RUDN Universtiy
- Polessky State University
- Issue: Vol 12, No 2 (2025)
- Pages: 89-103
- Section: RESEARCH ARTICLES
- Published: 29.06.2025
- URL: https://umo.abvpress.ru/jour/article/view/788
- DOI: https://doi.org/10.17650/2313-805X-2025-12-2-89-103
- ID: 788
Cite item
Full Text
Abstract
Introduction. The use of hypomethylating agents in the treatment of acute myeloid leukemia has increased overall patient survival by 12 %. However, alongside their potent antitumor effect, hypomethylating agents negatively impact genome stability due to the transposition of activated LINE1 elements, which contributes to the short duration of remission. Since LINE1 retrotransposition requires the ORF2-encoded reverse transcriptase, homologous to the retroviral enzyme, we proposed combining hypomethylating agents with a non-nucleoside inhibitor of this enzyme to reduce the genotoxic effects of 5-azacytidine.
Aim. To evaluate the effect of efavirenz on 5-azacytidine in cultured acute myeloid leukemia cells regarding: сytotoxic activity, expression of long interspersed nuclear elements (LINE1), the level of genetic instability.
Materials and methods. The study was conducted on THP-1 and KG-1 acute myeloid leukemia cell lines. 5-Azacytidine (hypomethylating agents) and efavirenz (reverse transcriptase inhibitor) were used. Cytotoxicity was assessed via the resazurin assay, apoptosis and necrosis rates were measured by flow cytometry, LINE1 expression was quantified using real-time polymerase chain reaction, and DNA damage was evaluated via the comet assay.
Results. Efavirenz did not affect the cytotoxicity of 5-azacytidine. Immunofluorescence staining of LINE1-encoded ORF1 protein and flow cytometry confirmed that efavirenz did not alter LINE1 expression levels. However, comet assay data indicated that combining 5-azacytidine with efavirenz reduced its genotoxic effects.
Conclusion. Our findings demonstrate, for the first time, the potential of a novel acute myeloid leukemia treatment strategy combining hypomethylating agents with reverse transcriptase inhibitors.
About the authors
Kh. M. Magomedova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Author for correspondence.
Email: fake@neicon.ru
ORCID iD: 0009-0004-8514-3859
24 Kashirskoe Shosse, Moscow 115522
Russian FederationI. A. Antonova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0009-0004-3482-8954
24 Kashirskoe Shosse, Moscow 115522
Russian FederationM. S. Strelkov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; RUDN Universtiy
Email: fake@neicon.ru
ORCID iD: 0009-0007-4778-0584
24 Kashirskoe Shosse, Moscow 115522
6 Miklukho-Maklaya St., Moscow 117198
Russian FederationV. A. Nurtdinova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
24 Kashirskoe Shosse, Moscow 115522
Russian FederationV. T. Cheshchevik
Polessky State University
Email: fake@neicon.ru
ORCID iD: 0000-0002-1457-8570
23 Dneprovskoy Flotilla St., Pinsk 225710
BelarusK. I. Kirsanov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; RUDN Universtiy
Email: fake@neicon.ru
ORCID iD: 0000-0002-8599-6833
24 Kashirskoe Shosse, Moscow 115522
6 Miklukho-Maklaya St., Moscow 117198
Russian FederationG. A. Belitsky
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-3167-7204
24 Kashirskoe Shosse, Moscow 115522
Russian FederationM. G. Yakubovskaya
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; RUDN Universtiy
Email: mgyakubovskaya@mail.ru
ORCID iD: 0000-0002-9710-8178
24 Kashirskoe Shosse, Moscow 115522
6 Miklukho-Maklaya St., Moscow 117198
Russian FederationO. A. Vlasova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: olya_vlasov@mail.ru
ORCID iD: 0000-0002-1498-849X
24 Kashirskoe Shosse, Moscow 115522
Russian FederationReferences
- Granatkin M.A., Nikitin E.A., Mikhailov E.S. et al. Combination of azacitidine and venetoclax in first-line therapy in elderly patients with acute myeloid leukemia: first experience. Clin Oncohematol 2022;15(3):282–8. doi: 10.21320/2500-2139-2022-15-3-282-288
- Dokshina I.A., Minaeva N.V., Pozdeev N.M. et al. Azacitidine is the preparation of choice in the treatment of myelodysplastic syndromes patients. Gematologiya i transfusiologiya = Russian Journal of Hematology and Transfusiology 2017;62(2):60–4. (In Russ.). doi: 10.18821/0234-5730-2017-62-2-60-64
- Jani C.T., Ahmed A., Singh H. et al. 1990–2019: estimates from the global burden of disease study. JCO Glob Oncol 2023;9:e2300229. doi: 10.1200/GO.23.00229
- Seymour J.F., Döhner H., Butrym A. et al. Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens. BMC Cancer 2017;17(1):852. doi: 10.1186/s12885-017-3803-6
- Christman J. 5-azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002;21:5483–95. doi: 10.1038/sj.onc.1205699
- Gu X., Tohme R., Tomlinson B. et al. Decitabine- and 5-azacytidine resistance emerges from adaptive responses of the pyrimidine metabolism network. Leukemia 2021;35(4):1023–36. doi: 10.1038/s41375-020-1003-x
- Brocks D., Schmidt C.R., Daskalakis M. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 2017;49(7):1052–60. doi: 10.1038/ng.3889
- Daskalakis M., Brocks D., Sheng Y.H. et al. Reactivation of endogenous retroviral elements via treatment with DNMT- and HDAC-inhibitors. Cell Cycle 2018;17(7):811–22. doi: 10.1080/15384101.2018.1442623
- Chiappinelli K.B., Strissel P.L., Desrichard A. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 2015;162(5):974–86. doi: 10.1016/j.cell.2015.07.011
- Vlasova O.A., Antonova I.A., Magomedova Kh.M. et al. Potential to use of viral reverse transcriptase inhibitors in oncology. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2024;11(2):8–28. (In Russ.). DOI: 17650/2313-805X-2024-11-2-8-28
- Singh A.K., Kumar A., Arora S. et al. Current insights and molecular docking studies of HIV-1 reverse transcriptase inhibitors. Chem Biol Drug Des 2024;103(1):e14372. doi: 10.1111/cbdd.14372
- Lander E.S., Linton L.M., Birren B. et al. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921. doi: 10.1038/35057062
- Cordaux R., Batzer M.A. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10(10):691–703. doi: 10.1038/nrg2640
- Orgel L.E., Crick F.H. Selfish DNA: the ultimate parasite. Nature 1980;284(5757):604–7. doi: 10.1038/284604a0
- Ardeljan D., Taylor M.S., Ting D.T., Burns K.H. The human long interspersed element-1 retrotransposon: an emerging biomarker of neoplasia. Clin Chem 2017;63(4):816–22. doi: 10.1373/clinchem.2016.257444
- Howard G., Eiges R., Gaudet F. et al. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 2008;27(3):404–8. doi: 10.1038/sj.onc.1210631
- Payer L.M., Burns K.H. Transposable elements in human genetic disease. Nat Rev Genet 2019;20(12):760–72. doi: 10.1038/s41576-019-0165-8
- Scott E.C., Devine S.E. The role of somatic L1 retrotransposition in human cancers. Viruses 2017;9(6):131. doi: 10.3390/v9060131
- Burns K.H. Transposable elements in cancer. Nat Rev Cancer 2017;17(7):415–24. doi: 10.1038/nrc.2017.35 20. Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pan cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020;52(3):306–19. doi: 10.1038/s41588-019-0562-0
- Toropov S.E., Rudakova A.V., Zakharova N.G. et al. Pharmacoeconomic analysis of firs-line antiretroviral therapy. VICH-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders 2015;7(1):29–39. (In Russ.). doi: 10.22328/2077-9828-2015-7-1-29-39
- Costa B., Vale N. Efavirenz: history, development and future. Biomolecules 2022;13(1):88. doi: 10.3390/biom13010088
- Hecht M., Harrer T., Körber V. et al. Cytotoxic effect of efavirenz in BxPC-3 pancreatic cancer cells is based on oxidative stress and is synergistic with ionizing radiation. Oncol Lett 2018;15(2):1728–36. doi: 10.3892/ol.2017.7523
- Houédé N., Pulido M., Mourey L. et al. A phase II trial evaluating the efficacy and safety of efavirenz in metastatic castration-resistant prostate cancer. Oncologist 2014;19(12):1227–8. doi: 10.1634/theoncologist.2014-0345
- Heaton B.J., Jensen R.L., Line J. et al. Exposure of human immune cells, to the antiretrovirals efavirenz and lopinavir, leads to lower glucose uptake and altered bioenergetic cell profiles through interactions with SLC2A1. Biomed Pharmacother 2022;150:112999. doi: 10.1016/j.biopha.2022.112999
- Tang H., Yang J., Xu J. et al. The transcription factor PAX5 activates human LINE1 retrotransposons to induce cellular senescence. EMBO Rep 2024;25(8):3263–75. doi: 10.1038/s44319-024-00176-9
- Tan Z., Jia X., Ma F. et al. Increased MMAB level in mitochondria as a novel biomarker of hepatotoxicity induced by efavirenz. PLoS One 2017;12(11):e0188366. doi: 10.1371/journal.pone.0188366
- Martinez-Arroyo O., Gruevska A., Victor V.M. et al. Mitophagy in human astrocytes treated with the antiretroviral drug efavirenz: lack of evidence or evidence of the lack. Antiviral Res 2019;168:36–50. doi: 10.1016/j.antiviral.2019.04.015
- Ganta K.K., Mandal A., Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol 2017;33(1):69–82. doi: 10.1007/s10565-016-9362-9 Вклад авторов
- Apostolova N., Gomez-Sucerquia L.J., Gortat A. et al. Autophagy as a rescue mechanism in efavirenz-induced mitochondrial dysfunction: a lesson from hepatic cells. Autophagy 2011;7(11):1402–4. doi: 10.4161/auto.7.11.17653
- Blas-García A., Apostolova N., Ballesteros D. et al. Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology 2010;52(1):115–25. doi: 10.1002/hep.23647
- Apostolova N., Funes H.A., Blas-Garcia A. et al. Involvement of nitric oxide in the mitochondrial action of efavirenz: a differential effect on neurons and glial cells. J Infect Dis 2015;211(12):1953–8. doi: 10.1093/infdis/jiu825
- Imaizumi N., Kwang Lee K., Zhang C., Boelsterli U.A. Mechanisms of cell death pathway activation following drug induced inhibition of mitochondrial complex I. Redox Biol 2015;4:279–88. doi: 10.1016/j.redox.2015.01.005
- Li M., Sopeyin A., Paintsil E. Combination of tenofovir and emtricitabine with efavirenz does not moderate inhibitory effect of efavirenz on mitochondrial function and cholesterol biosynthesis in human T lymphoblastoid cell line. Antimicrob Agents Chemother 2018;62(9):e00691–18. doi: 10.1128/AAC.00691-18
- Khan R., Schmidt-Mende J., Karimi M. et al. Hypomethylation and apoptosis in 5-azacytidine-treated myeloid cells. Exp Hematol 2008;36(2):149–57. doi: 10.1016/j.exphem.2007.10.002
- Kim D.Y., Cheong H.T., Ra C.S. et al. Effect of 5-azacytidine (5-aza) on UCP2 expression in human liver and colon cancer cells. Int J Med Sci 2021;18(10):2176–86. doi: 10.7150/ijms.56564
- Derdak Z., Mark N.M., Beldi G. et al. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res 2008;68(8):2813–9. doi: 10.1158/0008-5472.CAN-08-0053
- Dalla Pozza E., Fiorini C., Dando I. et al. Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine. Biochim Biophys Acta 2012;1823(10):1856–63. doi: 10.1016/j.bbamcr.2012.06.007
- Boada M., Grille S. Myelodysplastic syndrome in patients living with HIV infection. Hematol Transfus Cell Ther 2023;45(1):119–23. doi: 10.1016/j.htct.2021.06.006
- Forghieri F., Nasillo V., Bettelli F. et al. Acute myeloid leukemia in patients living with HIV infection: several questions, fewer answers. Int J Mol Sci 2020;21(3):1081. doi: 10.3390/ijms21031081
Supplementary files


