Preview

Advances in Molecular Oncology

Advanced search

Features of cancer-testicular antigen genes transcriptional activity regulation in gastric cancer

https://doi.org/10.17650/2313-805X-2025-12-3-78-99

Abstract

Introduction. Gastric cancer remains a serious public health problem. Cancer-testicular antigen genes (CT-genes) in gastric cancer may be promising targets for immunotherapy due to their limited expression in normal tissues. Competing endogenous RNA networks (ceRNAs) play an important role in regulating CT-gene expression in gastric cancer. These networks are complex and require comprehensive bioinformatics and experimental study.
Aim. To conduct a bioinformatic analysis followed by validation of СT-gene expression and its regulation in malignant gastric tumors.
Materials and methods. Data for the bioinformatics stage were downloaded from GEO. Identification of differentially expressed genes was carried out using GEO2R, microRNA targeting genes – using the Random forest machine learning method. An analysis of the interaction of microRNA and long non-coding RNA (lncRNAs) was also performed. The clinical material for the experimental stage was tissues (tumor and conditionally normal) of 100 patients with a histologically confirmed diagnosis of gastric cancer. The relative expression values of 6 CT-genes (MAGEA10, MAGEA2, MAGEA12, MAGEA3, MAGEA6, MAGEH1), as well as their targeting microRNAs and lncRNAs, were determined using real-time polymerase chain reaction.
Results. Using GEO2R, 18,617 differentially expressed loci were detected, including protein-coding genes, microRNA and lncRNAs. Of these, a change in the expression of 6 CT-genes was revealed – MAGEA10, MAGEA2, MAGEA12, MAGEA3, MAGEA6, MAGEH1, interacting with 40 microRNAs, in turn interacting with 17 lncRNAs. In the patients tumor tissue, an increase in expression of the MAGEA10, MAGEA3 and MAGEA6 genes (p <0.0001), a decrease in expression of miR-1207-5p, -6858-5p, -3127-3p, -3940-3p, -6807-3p, -3085-3p, -3934-5p, -4488, -4530, -6777-3p, -99a-3p (p <0.0001) and an increase in expression of miR-7113-3p, miR-874-3p, as well as an increase in expression of LINC01089, AC145285.6, GAS5, AC005034.3, AL691447.2 (p <0.001) and decreased expression of SNHG14, AC002101.1, SLC9A3-AS1 and AL118506.1 (p <0.001) was found. Based on the obtained data, a model of the regulatory network for CT-genes in gastric cancer was constructed.
Conclusion. The study showed disturbances in the CT-genes competitively interacting RNA network in gastric adenocarcinoma. The obtained data are important for understanding the fundamental mechanisms of CT-gene regulation, as well as for improving approaches to immunotherapy (new targets and regulatory molecules) and diagnostics (new molecular markers) of this disease. 

About the Authors

D. S. Kutilin
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Denis Sergeevich Kutilin

63 14th Line St., Rostov-on-Don 344037, Russia



O. I. Kit
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344037, Russia



A. Yu. Maksimov
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344037, Russia



L. Kh. Chalkhakhyan
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344037, Russia



A. V. Dashkov
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344037, Russia



S. A. Malinin
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344037, Russia



G. V. Kaminsky
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344037, Russia



T. P. Shkurat
Southern Federal University
Russian Federation

105/42 Bolshaya Sadovaya St., Rostov-on-Don 344006, Russia



References

1. Ilic M., Ilic I. Epidemiology of stomach cancer. World J Gastroenterol 2022;28(12):1187–203. DOI: 10.3748/wjg.v28.i12.1187

2. Sun H., Wang Y., Wang S. et al. The involvement of collagen family genes in tumor enlargement of gastric cancer. Sci Rep 2023;13(1):100. DOI: 10.1038/s41598-022-25061-0

3. Oue N., Hamai Y., Mitani Y. et al. Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res 2004;64(7):2397–405. DOI: 10.1158/0008-5472.can-03-3514

4. Li L., Zhu Z., Zhao Y. et al. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics. Sci Rep 2019;9(1):7827. DOI: 10.1038/s41598-019-43924-x

5. Takahashi Y., Fukuyama T., Futawatari N. et al. Expression of kitakyushu lung cancer antigen-1 as detected by a novel monoclonal antibody in gastric cancer. Anticancer Res 2019;39(11):6259–63. DOI: 10.21873/anticanres.13835

6. Kutilin D.S., Mogushkova Kh.A. Effect of anthracycline antitumor antibiotics upon transcription activity of cancer-testis antigens in model experiments with HeLa cells. Meditsinskaya immunologiya = Medical Immunology 2019;21(3):539–46. (In Russ.).

7. Vodolazhskiy D.I., Kutilin D.S., Mogushkova Kh.A., Kit O.I. Transcriptional profile of cancer-testicular antigens in patients with breast cancer. Meditsinskaya immunologiya = Medical Immunology 2018;20(3):383–90. (In Russ.). DOI: 10.15789/1563-0625-2018-3-383-390

8. Kutilin D.S., Kit O.I. Relationship between the transcriptional activity of СT-genes and survival in colorectal cancer patients. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology 2022;21(1):37–46. (In Russ.). DOI: 10.21294/1814-4861-2022-21-1-37-46

9. Futawatari N., Fukuyama T., Yamamura R. et al. Early gastric cancer frequently has high expression of KK-LC-1, a cancer-testis antigen. World J Gastroenterol 2017;23(46):8200–6. DOI: 10.3748/wjg.v23.i46.8200

10. Chen Y., Panarelli N., Piotti K., Yantiss R. Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions. Cancer Immunol Res 2013;2(5):480–6. DOI: 10.1158/2326-6066.CIR-13-0124

11. Guo L., Song C., Wang P. et al. Competing endogenous RNA networks and gastric cancer. World J Gastroenterol 2015;21(41):11680–7. DOI: 10.3748/wjg.v21.i41.11680

12. Wu H.J., Dai W.-W., Wang L.-B. et al. Comprehensive analysis of the molecular mechanism for gastric cancer based on competitive endogenous RNA network. World J Traditional Chinese Med 2023;9(1):29–42. DOI: 10.4103/2311-8571.355010

13. Kit O.I., Engibaryan M.A., Gvaramiya A.K. et al. Genetic and epigenetic predictors of tongue squamous cell carcinoma sensitivity to platinum drugs. Vestnik Rossiyskoy akademii meditsinskih nauk = Annals of the Russian Academy of Medical Sciences 2024;79(6):490–506. (In Russ.). DOI: 10.15690/vramn2337

14. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550. DOI: 10.1186/s13059-014-0550-8

15. Davis S., Meltzer P.S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007;23(14):1846–7. DOI: 10.1093/bioinformatics/btm254

16. Kutilin D.S., Gusareva M.A., Kosheleva N.G., Kit O.I. Regulatory network of competitively interacting RNAs and effectiveness of rectal tumors radiotherapy. Klin Onkol 2022;35(4):297–306. DOI: 10.48095/ccko2022297

17. Kit O.I., Vodolazhsky D.I., Kutilin D.S., Gudueva E.N. Changes in the number of copies of genetic loci in gastric cancer. Molekulyarnaya biologiya = Molecular Biology 2015;49(4):658–66. (In Russ.). DOI: 10.7868/S0026898415040096

18. Kutilin D.S., Dimitriadi S.N., Vodolazhsky D.I. et al. The effect of thermal ischemia-reperfusion on the expression of apoptosisregulating genes in the renal tissue of patients with renal cell carcinoma. Nefrologiya = Nephrology 2017;21(1):80–6. (In Russ.). DOI: 10.24884/1561-6274-2017-21-1-80-86

19. Kutilin D.S., Nikitin I.S., Kit O.I. Features of some transcription factors gene expression in the malignancy tissues of the corpus uteri. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2019;6(1):57–62. (In Russ.). DOI: 10.17650/2313-805X-2019-6-1-57-62

20. Kutilin D.S. Regulation of gene expression of testicular cancer antigens in patients with colorectal cancer. Molekulyarnaya biologiya = Molecular Biology 2020;54(4):580–95 (In Russ.). DOI: 10.31857/S0026898420040096

21. Vandesompele J., De Preter K., Pattyn F. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3(7):RESEARCH0034. DOI: 10.1186/gb-2002-3-7-research0034

22. Balcells I., Cirera S., Busk P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnology 2011;11:70. DOI: 10.1186/1472-6750-11-70

23. Peltier H.J., Latham G.J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008;14(5):844–52. DOI: 10.1261/rna.939908

24. Valmori D., Dutoit V., Rubio-Godoy V. et al. Frequent cytolytic T-cell responses to peptide MAGE-A10 (254–262) in melanoma. Cancer Res 2001;61(2):509–12.

25. Gevorkyan Y.A., Kutilin D.S., Kit O.I. et al. Copy number variation and expression of CT-genes in patients with colorectal cancer. Available at: https://www.asco.org/abstracts-presentations/ABSTRACT295213

26. Batchu R.B., Gruzdyn O., Potti R.B. et al. MAGE-A3 with cellpenetrating domain as an efficient therapeutic cancer vaccine. Jama Surg 2014;149(5):451–7. DOI: 10.1001/jamasurg.2013.4113

27. Wang L., Xu Y., Luo C. et al. MAGEA10 gene expression in nonsmall cell lung cancer and A549 cells, and the affinity of epitopes with the complex of HLA-A(*)0201 alleles. Cell Immunol 2015;297(1):10–8. DOI: 10.1016/j.cellimm.2015.05.004

28. Liu M., Li J., Wang Y. et al. MAGEA6 positively regulates MSMO1 and promotes the migration and invasion of oesophageal cancer cells. Exp Ther Med 2022;23(3):204. DOI: 10.3892/etm.2022.11127

29. Kuldkepp A., Karakai M., Toomsoo E. et al. Cancer-testis antigens MAGEA proteins are incorporated into extracellular vesicles released by cells. Oncotarget 2019;10(38):3694–708. DOI: 10.18632/oncotarget.26979

30. Kuldkepp A., Karakai M., Toomsoo E. et al. Cancer-testis antigens MAGEA proteins are incorporated into extracellular vesicles released by cells. Oncotarget 2019;10(38):3694–708. DOI: 10.18632/oncotarget.26979

31. The Human Protein Atlas. Available at: https://www.proteinatlas.org/

32. Decoster L., Wauters I., Vansteenkiste J.F. Vaccination therapy for non-small-cell lung cancer: review of agents in phase III development. Ann Oncol 2011;23(6):1387–93. DOI: 10.1093/annonc/mdr564

33. Peled N., Oton A.B., Hirsch F.R., Bunn P. MAGE A3 antigenspecific cancer immunotherapeutic. Immunotherapy 2009;1(1): 19–251. DOI: 10.2217/1750743X.1.1.19

34. Use of MAGE A3-protein D fusion antigen in immunotherapy combined with surgery, chemotherapy or radiotherapy for the treatment of cancer. (Patent US20100008980 – 2008-01-08). Retrieved 2012-10-16.

35. Gao X., Li Q., Chen G. et al. MAGEA3 promotes proliferation and suppresses apoptosis in cervical cancer cells by inhibiting the KAP1/p53 signaling pathway. Am J Transl Res 2020;12(7):3596–612.

36. Pan S.J., Ren J., Jiang H. et al. MAGEA6 promotes human glioma cell survival via targeting AMPKα1. Cancer Lett 2018;412:21–9. DOI: 10.1016/j.canlet.2017.09.051

37. Zhu H., Jiang Cw., Zhang Wl. et al. Targeting oncogenic MAGEA6 sensitizes triple negative breast cancer to doxorubicin through its autophagy and ferroptosis by stabling AMPKα1. Cell Death Discov 2024;10(1):430. DOI: 10.1038/s41420-024-02196-9

38. Tsang Y.H., Mills G.B. The roles of MAGEA6 variants in pancreatic cancer development and their potential impact on cancer immunotherapy. Autophagy 2020;16(10):1923–4. DOI: 10.1080/15548627.2020.1802091

39. Tsang Y.H., Wang Y., Kong K. et al. Differential expression of MAGEA6 toggles autophagy to promote pancreatic cancer progression. Elife 2020,9:e48963. DOI: 10.7554/eLife.48963

40. Shukla S.A., Bachireddy P., Schilling B. et al. Cancer-germline antigen expression discriminates clinical outcome to CTLA-4 blockade. Cell 2018,173(3):624–33.e8. DOI: 10.1016/j.cell.2018.03.026

41. Pineda C.T., Ramanathan S., Fon Tacer K. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 2015,160(4):715–28. DOI: 10.1016/j.cell.2015.01.034

42. Pineda C.T., Potts P.R. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy 2015;11(5):844–6. DOI: 10.1080/15548627.2015.1034420

43. Mohsenzadegan M., Razmi M., Vafaei S. et al. Co-expression of cancer-testis antigens of MAGE-A6 and MAGE-A11 is associated with tumor aggressiveness in patients with bladder cancer. Sci Rep 2022;12(1):599. DOI: 10.1038/s41598-021-04510-2

44. Kutilin D.S., Gusareva M.A., Kosheleva N.G. et al. Disorders in the regulatory network of competitively interacting RNAs and radioresistance of rectal tumors. Mezhdunarodny zhurnal prikladnyh i fundamental’nyh issledovaniy = International Journal of Applied and Fundamental Research 2021;11:12–29. (In Russ.). DOI: 10.17513/mjpfi.13306

45. Abdelsattar Z.M., Wong S.L., Regenbogen S.E. et al. Colorectal cancer outcomes and treatment patterns in patients too young for average-risk screening. Cancer 2016;122(6):929–34. DOI: 10.1002/cncr.29716

46. Cao C., Zhang T., Zhang D. et al. The long noncoding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma. Oncogene 2017;36(8):1112. DOI: 10.1038/onc.2016.278


Review

For citations:


Kutilin D.S., Kit O.I., Maksimov A.Yu., Chalkhakhyan L.Kh., Dashkov A.V., Malinin S.A., Kaminsky G.V., Shkurat T.P. Features of cancer-testicular antigen genes transcriptional activity regulation in gastric cancer. Advances in Molecular Oncology. 2025;12(3):78-99. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-3-78-99

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)