Молекулярные эффекты пестицидов карбарила, хлорпирифоса, манкоцеба, тирама и пендиметалина в условно-нормальных клетках in vitro: генотоксичность, клоногенность и влияние на экспрессию генов, ассоциированных с канцерогенезом
https://doi.org/10.17650/2313-805X-2025-12-3-116-131
Аннотация
Введение. Злокачественные новообразования остаются одной из основных причин смертности в мире. В развитии данной патологии большую роль играет воздействие неблагоприятных факторов окружающей среды, в том числе пестицидов. Несмотря на широкий спектр используемых в сельском хозяйстве пестицидов, их молекулярные эффекты и канцерогенный потенциал изучены лишь в отношении небольшого числа моделей, включая нормальные клетки человека.
Цель исследования – изучить молекулярные эффекты пестицидов карбарила, хлорпирифоса, манкоцеба, тирама и пендиметалина в условно-нормальных клетках HaCaT и MCF10A.
Материалы и методы. Нетоксичные концентрации пестицидов определяли с помощью МТТ-теста. Генотоксичность анализировали методом ДНК-комет. Пролиферативный потенциал оценивали с помощью клоногенного анализа, изменение экспрессии генов, ассоциированных с канцерогенезом, – с использованием полимеразной цепной реакции в реальном времени.
Результаты. Карбарил вызывал повреждение ДНК в клетках MCF10A, способствовал пролиферации клеток обеих линий в клоногенном тесте, а также приводил к активации генов биотрансформации (AHR, GSTA4) в клетках MCF10A, репрессии (CYP1B1, GSTA4) в клетках HaCaT и снижению экспрессии генов воспаления (IL1a, IL1b, PTGES, IFNGR1). Хлорпирифос не показал генотоксического эффекта и не влиял на клоногенность, но вызывал индукцию генов биотрансформации (CYP1A1, CYP1B1), воспаления (IL1b, PTGES) и генов BCL2 и DNMTs. Манкоцеб и тирам не проявляли генотоксичности в клетках HaCaT и MCF10A, но активировали отдельные гены репарации (ATR/ATM). Тирам стимулировал пролиферацию клеток HaCaT в клоногенном тесте, а манкоцеб активировал экспрессию генов – регуляторов пролиферации (CCND2, CCNE1, Ki-67), но не влиял на рост колоний; оба фунгицида снижали экспрессию генов воспаления (COX2, IL1a, IL1b). Пендиметалин вызывал повреждение ДНК и активацию экспрессии генов репарации (ATR, GADD45a, PCNA) в клетках обеих линий, а также снижал экспрессию GLUT3 в клетках HaCaT и индуцировал экспрессию генов CYP1A1 в клетках HaCaT и CYP1B1 – в клетках MCF10A.
Заключение. В ходе комплексной оценки влияния пестицидов на нормальные человеческие клетки выявлено, что пендиметалин, хлорпирифос и карбарил оказывают наибольшее проканцерогенное действие.
Об авторах
Е. С. ЛыловаРоссия
Россия, 115522 Москва, Каширское шоссе, 24
В. Г. Попова
Россия
Россия, 115522 Москва, Каширское шоссе, 24
К. А. Зимин
Россия
Россия, 115522 Москва, Каширское шоссе, 24;
Россия, 117513 Москва, ул. Островитянова, 1
А. Ю. Букина
Россия
Россия, 115522 Москва, Каширское шоссе, 24
В. А. Нуртдинова
Россия
Россия, 115522 Москва, Каширское шоссе, 24
С. С. Шмаков
Россия
Россия, 119991 Москва, Ленинские горы, 1, стр. 12
М. Г. Якубовская
Россия
Россия, 115522 Москва, Каширское шоссе, 24
К. И. Кирсанов
Россия
Россия, 115522 Москва, Каширское шоссе, 24; Россия, 117198 Москва, ул. Миклухо-Маклая, 6
В. П. Максимова
Россия
Варвара Павловна Максимова
Россия, 115522 Москва, Каширское шоссе, 24
Список литературы
1. World Health Organization. Global cancer burden growing, amidst mounting need for services. Available at: https://www.who.int/ru/news/item/01-02-2024-global-cancer-burden-growing--amidstmounting-need-for-services
2. Cancer Tomorrow – IARC. Estimated number of new cases from 2022 to 2050, Both sexes, age [0–85+]. Available at: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?years=2050
3. Wan N.F., Fu L., Dainese M. et al. Pesticides have negative effects on non-target organisms. Nat Commun 2025;16(1):1360. DOI: 10.1038/s41467-025-56732-x
4. Stockholm Convention. The 12 initial POPs under the Stockholm Convention. Available at: https://chm.pops.int/Convention/ThePOPs/The12initialPOPs/tabid/296
5. IARC. Agents classified by the IARC Monographs, Volumes 1–139. 2025. Available at: https://monographs.iarc.who.int/agentsclassified-by-the-iarc/
6. Food and Agriculture Organisation of the United Nations. Commission on Genetic Resources for Food and Agriculture. 2019. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/50b79369-9249-4486-ac07-9098d07df60a/content
7. IARC. Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2025–2029. 2024. Available at: https://www.iarc.who.int/news-events/advisory-grouprecommendations-on-priorities-for-the-iarc-monographsduring-2025-2029/
8. Smith M.T., Guyton K.Z., Gibbons C.F. et al. Key Characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 2016;124(6):713–21. DOI: 10.1289/ehp.1509912
9. Ataei M., Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicol Appl Pharmacol 2022;456:116280. DOI: 10.1016/j.taap.2022.116280
10. Shekhar C., Khosya R., Thakur K. et al. A systematic review of pesticide exposure, associated risks, and long-term human health impacts. Toxicol Rep 2024;13:101840. DOI: 10.1016/j.toxrep.2024.101840
11. Sule R.O., Condon L., Gomes A.V. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxid Med Cell Longev. 2022;2022:5563759. DOI: 10.1155/2022/5563759
12. Gunasekara A.S., Rubin A.L., Goh K.S. et al. Environmental fate and toxicology of carbaryl. Rev Environ Contam Toxicol. 2008;196:95-121. DOI: 10.1007/978-0-387-78444-1_4
13. De Roos A.J., Schinasi L.H., Miligi L. et al. Occupational insecticide exposure and risk of non-Hodgkin lymphoma: A pooled case-control study from the InterLymph Consortium. Int J Cancer 2021;149(10):1768-86. DOI: 10.1002/ijc.33740
14. Presutti R., Harris S.A., Kachuri L. et al. Pesticide exposures and the risk of multiple myeloma in men: An analysis of the North American Pooled Project. Int J Cancer 2016;139(8):1703–14. DOI: 10.1002/ijc.30218
15. Koutros S., Harris S.A., Spinelli J.J. et al. Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the north American pooled project. Environ Int 2019;127:199–205. DOI: 10.1016/j.envint.2019.03.018
16. Erickson P.A., Andreotti G., Remigio R.V. et al. Carbaryl use and incident cancer in the Agricultural Health Study: an updated analysis. Int J Hyg Environ Health 2025;268:114615. DOI: 10.1016/j.ijheh.2025.114615
17. Shukla Y., Antony M., Mehrotra N.K. Carcinogenic and cocarcinogenic studies with carbaryl following topical exposure in mice. Cancer Lett 1992;62(2):133–40. DOI: 10.1016/0304-3835(92)90183-v
18. Meeker J.D., Singh N.P., Ryan L. et al. Urinary levels of insecticide metabolites and DNA damage in human sperm. Hum Reprod 2004;19(11):2573–80. DOI: 10.1093/humrep/deh444
19. Nandi N.K., Vyas A., Akhtar M.J., Kumar B. The growing concern of chlorpyrifos exposures on human and environmental health. Pestic Biochem Physiol 2022;185:105138. DOI: 10.1016/j.pestbp.2022.105138
20. Lee W.J., Blair A., Hoppin J.A. et al. Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J Natl Cancer Inst 2004;96(23):1781–9. DOI: 10.1093/jnci/djh324
21. Tayour C., Ritz B., Langholz B. et al. A case-control study of breast cancer risk and ambient exposure to pesticides. Environ Epidemiol 2019;3(5):e070. DOI: 10.1097/EE9.0000000000000070
22. Ventura C., Nieto M.R., Bourguignon N. et al. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol Biol 2016;156:1–9. DOI: 10.1016/j.jsbmb.2015.10.010
23. Hazarika J., Ganguly M., Borgohain G. et al. Endocrine disruption: molecular interactions of chlorpyrifos and its degradation products with estrogen receptor. Structural Chemistry 2020;31:2011–21. DOI: 10.1007/s11224-020-01562-4
24. Leon M.E., Schinasi L.H., Lebailly P. et al. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol 2019;48(5):1519–35. DOI: 10.1093/ije/dyz017
25. Koutros S., Silverman D.T., Alavanja M.C. et al. Occupational exposure to pesticides and bladder cancer risk. Int J Epidemiol 2016;45(3):792–805. DOI: 10.1093/ije/dyv195
26. Dennis L.K., Lynch C.F., Sandler D.P., Alavanja M.C. Pesticide use and cutaneous melanoma in pesticide applicators in the agricultural heath study. Environ Health Perspect 2010;118(6):812–7. DOI: 10.1289/ehp.0901518
27. Piel C., Pouchieu C., Carles C. et al. Agricultural exposures to carbamate herbicides and fungicides and central nervous system tumour incidence in the cohort AGRICAN. Environ Int 2019;130:104876. DOI: 10.1016/j.envint.2019.05.070
28. Mills P.K., Yang R., Riordan D. Lymphohematopoietic cancers in the United Farm Workers of America (UFW), 1988–2001. Cancer Causes Control 2005;16(7):823–30. DOI: 10.1007/s10552-005-2703-2
29. Vighi M., Matthies M., Solomon K.R. Critical assessment of pendimethalin in terms of persistence, bioaccumulation, toxicity, and potential for long-range transport. J Toxicol Environ Health B Crit Rev 2017;20(1):1–21. DOI: 10.1080/10937404.2016.1222320
30. Hou L., Lee W.J., Rusiecki J. et al. Pendimethalin exposure and cancer incidence among pesticide applicators. Epidemiology 2006;17(3):302–7. DOI: 10.1097/01.ede.0000201398.82658.50
31. Andreotti G., Freeman L.E., Hou L. et al. Agricultural pesticide use and pancreatic cancer risk in the Agricultural Health Study Cohort. Int J Cancer 2009;124(10):2495–500. DOI: 10.1002/ijc.24185
32. Walsh K.D., Kato T.A. Alkaline comet assay to detect DNA damage. Methods Mol Biol 2023;2519:65–72. DOI: 10.1007/978-1-0716-2433-3_7
33. Guzman C., Bagga M., Kaur A. et al. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014;9(3):e92444. DOI: 10.1371/journal.pone.0092444
34. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25(4):402–8. DOI: 10.1006/meth.2001.1262
35. IARC. Certain polycyclic aromatic hydrocarbons and heterocyclic compounds. 1973. Available at: https://publications.iarc.who.int/Book-And-Report-Series/Iarc-Monographs-On-TheIdentification-Of-Carcinogenic-Hazards-To-Humans/CertainPolycyclic-Aromatic-Hydrocarbons-And-HeterocyclicCompounds-1973
36. Robles H. Methylcholanthrene, 3-. Available at: https://www.researchgate.net/publication/304034151_Methylcholanthrene_3-
37. Kawabe M., Urano K., Suguro M. et al. Tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in an ultra-short-term skin carcinogenesis bioassay using rasH2 mice. Vet Pathol 2013;50(5):903–8. DOI: 10.1177/0300985813486811
38. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984;308(5961):693–8. DOI: 10.1038/308693a0
39. Denison M.S., Phelan D., Winter G.M., Ziccardi M.H. Carbaryl, a carbamate insecticide, is a ligand for the hepatic Ah (dioxin) receptor. Toxicol Appl Pharmacol 1998;152(2):406–14. DOI: 10.1006/taap.1998.9999
40. Larigot L., Juricek L., Dairou J., Coumoul X. AhR signaling pathways and regulatory functions. Biochim Open 2018;7:1–9. DOI: 10.1016/j.biopen.2018.05.001
41. Ledirac N., Delescluse C., de Sousa G. et al. Carbaryl induces CYP1A1 gene expression in HepG2 and HaCaT cells but is not a ligand of the human hepatic Ah receptor. Toxicol Appl Pharmacol 1997;144(1):177–82. DOI: 10.1006/taap.1997.8120
42. Honkakoski P., Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 2000;347(Pt 2):321–37. DOI: 10.1042/0264-6021:3470321
43. Saquib Q., Siddiqui M.A., Ansari S.M. et al. Cytotoxicity and genotoxicity of methomyl, carbaryl, metalaxyl, and pendimethalin in human umbilical vein endothelial cells. J Appl Toxicol 2021;41(5):832–46. DOI: 10.1002/jat.4139
44. Fernandes R., Hosoya K., Pereira P. Reactive oxygen species downregulate glucose transport system in retinal endothelial cells. Am J Physiol Cell Physiol 2011;300(4):C927–36. DOI: 10.1152/ajpcell.00140.2010
45. Chen Y., Joo J., Chu J.M. et al. Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice. J Neuroinflammation 2023;20(1):237. DOI: 10.1186/s12974-023-02905-8
46. Jorsaraei S.G., Maliji G., Azadmehr A. et al. Immunotoxicity effects of carbaryl in vivo and in vitro. Environ Toxicol Pharmacol 2014;38(3):838–44. DOI: 10.1016/j.etap.2014.09.004
47. Seher Karsli S.Y., Esra F. İncedere düzdağ, Türkan yurdun. Assessment of genotoxic effects of organophosphate and carbamate pesticides by comet assay. İstanbul J Pharm 2022;52(2):136–42. DOI: 10.26650/IstanbulJPharm.2022.1057224
48. Thakur S., Dhiman M., Mantha A.K. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem 2018;441(1–2):201–16. DOI: 10.1007/s11010-017-3186-7
49. Balakrishnan P., Thirunavukarasu K., Tamizhmani P. Toxicological impact of chronic chlorpyrifos exposure: DNA damage and epigenetic alterations induces neoplastic transformation of liver cells. Biochem Biophys Res Commun 2025;746:151287. DOI: 10.1016/j.bbrc.2025.151287
50. Moyano P., Garcia J., Garcia J.M. et al. Chlorpyrifos-induced cell proliferation in human breast cancer cell lines differentially mediated by estrogen and aryl hydrocarbon receptors and KIAA1363 enzyme after 24 h and 14 days exposure. Chemosphere 2020;251:126426. DOI: 10.1016/j.chemosphere.2020.126426
51. Hevir N., Trost N., Debeljak N., Rizner T.L. Expression of estrogen and progesterone receptors and estrogen metabolizing enzymes in different breast cancer cell lines. Chem Biol Interact 2011; 191(1–3):206–16. DOI: 10.1016/j.cbi.2010.12.013
52. Lasagna M., Ventura C., Hielpos M.S. et al. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression. Environ Res 2022;204(Pt A):111989. DOI: 10.1016/j.envres.2021.111989
53. Moyano P., Garcia J.M., Garcia J. et al. Chlorpyrifos induces cell proliferation in MCF-7 and MDA-MB-231 cells, through cholinergic and Wnt/beta-catenin signaling disruption, AChE-R upregulation and oxidative stress generation after single and repeated treatment. Food Chem Toxicol 2021;152:112241. DOI: 10.1016/j.fct.2021.112241
54. Ventura C., Nunez M., Miret N. et al. Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol Lett 2012;213(2):184–93. DOI: 10.1016/j.toxlet.2012.06.017
55. Croom E.L., Wallace A.D., Hodgson E. Human variation in CYPspecific chlorpyrifos metabolism. Toxicology 2010;276(3):184–91. DOI: 10.1016/j.tox.2010.08.005
56. Montanari C., Franco-Campos F., Taroncher M. et al. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024;192:114933. DOI: 10.1016/j.fct.2024.114933
57. Radhey S. Verma A.M., Nalini Srivastava. In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology 2007;88(2):191–6. DOI: 10.1016/j.pestbp.2006.11.002
58. Lasagna M., Hielpos M.S., Ventura C. et al. Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. Ecotoxicol Environ Saf 2020;205:111312. DOI: 10.1016/j.ecoenv.2020.111312
59. Yahia D., El-Amir Y.O., Rushdi M. Mancozeb fungicide-induced genotoxic effects, metabolic alterations, and histological changes in the colon and liver of Sprague Dawley rats. Toxicol Ind Health 2019;35(4):265–76. DOI: 10.1177/0748233719834150
60. Pienkowska M., Zielenska M. Genotoxic effects of thiram evaluated by sister-chromatid exchanges in human lymphocytes. Mutat Res 1990;245(2):119–23. DOI: 10.1016/0165-7992(90)90010-h
61. Maksimova V., Bukina A., Khayrieva G. et al. Thiram effects on HeLa TI cells. Proceedings 2024;102(1):35. DOI: 10.3390/proceedings2024102035
62. Lori G., Tassinari R., Narciso L. et al. Toxicological Comparison of mancozeb and zoxamide fungicides at environmentally relevant concentrations by an in vitro approach. Int J Environ Res Public Health 2021;18(16):8591. DOI: 10.3390/ijerph18168591
63. Bhaskar R., Mishra A., Mohanty B. Effects of mancozeb and imidacloprid pesticides on activities of steroid biosynthetic enzymes cytochromes P450. J Kalash Sci 2014;2:1–6.
64. Dalvi P.S., Wilder-Ofie T., Mares B. et al. Toxicologic implications of the metabolism of thiram, dimethyldithiocarbamate and carbon disulfide mediated by hepatic cytochrome P450 isozymes in rats. Pesticide Biochemi Physiol 2002;74(2):85–90.
65. Dalvi P.S., Wilder-Ofie T., Mares B. et al. Effect of cytochrome P450 inducers on the metabolism and toxicity of thiram in rats. Vet Hum Toxicol 2002;44(6):331–3.
66. Kumar K., Sabarwal A., Singh R.P. Mancozeb selectively induces mitochondrial-mediated apoptosis in human gastric carcinoma cells through ROS generation. Mitochondrion 2019;48:1–10. DOI: 10.1016/j.mito.2018.06.003
67. Kurpios-Piec D., Grosicka-Maciag E., Wozniak K. et al. Thiram activates NF-kappaB and enhances ICAM-1 expression in human microvascular endothelial HMEC-1 cells. Pestic Biochem Physiol 2015;118:82–9. DOI: 10.1016/j.pestbp.2014.12.003
68. Sarigol Kilic Z., Aydin S., Undeger Bucurgat U., Basaran N. In vitro genotoxicity assessment of dinitroaniline herbicides pendimethalin and trifluralin. Food Chem Toxicol 2018;113:90–8. DOI: 10.1016/j.fct.2018.01.034
69. Ansari S.M., Saquib Q., Attia S.M. et al. Pendimethalin induces oxidative stress, DNA damage, and mitochondrial dysfunction to trigger apoptosis in human lymphocytes and rat bone-marrow cells. Histochem Cell Biol 2018;149(2):127–41. DOI: 10.1007/s00418-017-1622-0
70. Ahmad M.I., Zafeer M.F., Javed M., Ahmad M. Pendimethalininduced oxidative stress, DNA damage and activation of antiinflammatory and apoptotic markers in male rats. Sci Rep 2018;8(1):17139. DOI: 10.1038/s41598-018-35484-3
71. Lee H.S., Amarakoon D., Tamia G. et al. Pendimethalin induces apoptotic cell death through activating ER stress-mediated mitochondrial dysfunction in human umbilical vein endothelial cells. Food Chem Toxicol 2022;168:113370. DOI: 10.1016/j.fct.2022.113370
72. Ham J., Lim W., Song G. Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy. Environ Pollut 2021;278:116835. DOI: 10.1016/j.envpol.2021.116835
73. Sarigol-Kilic Z., Undeger-Bucurgat U. The Apoptotic and Antiapoptotic Effects of Pendimethalin and Trifluralin on A549 Cells In Vitro. Turk J Pharm Sci 2018;15(3):364–9. DOI: 10.4274/tjps.94695
Рецензия
Для цитирования:
Лылова Е.С., Попова В.Г., Зимин К.А., Букина А.Ю., Нуртдинова В.А., Шмаков С.С., Якубовская М.Г., Кирсанов К.И., Максимова В.П. Молекулярные эффекты пестицидов карбарила, хлорпирифоса, манкоцеба, тирама и пендиметалина в условно-нормальных клетках in vitro: генотоксичность, клоногенность и влияние на экспрессию генов, ассоциированных с канцерогенезом. Успехи молекулярной онкологии. 2025;12(3):116-131. https://doi.org/10.17650/2313-805X-2025-12-3-116-131
For citation:
Lylova E.S., Popova V.G., Zimin K.А., Bukina A.Yu., Nurtdinova V.A., Shmakov S.S., Yakubovskaya M.G., Kirsanov K.I., Maksimova V.P. Molecular effects of the pesticides carbaryl, chlorpyrifos, mancozeb, thiram, and pendimethalin in conditionally normal cells in vitro: genotoxicity, clonogenicity and effects on the expression of genes associated with carcinogenesis. Advances in Molecular Oncology. 2025;12(3):116-131. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-3-116-131