Preview

Успехи молекулярной онкологии

Расширенный поиск

Молекулярные эффекты пестицидов карбарила, хлорпирифоса, манкоцеба, тирама и пендиметалина в условно-нормальных клетках in vitro: генотоксичность, клоногенность и влияние на экспрессию генов, ассоциированных с канцерогенезом

https://doi.org/10.17650/2313-805X-2025-12-3-116-131

Аннотация

Введение. Злокачественные новообразования остаются одной из основных причин смертности в мире. В развитии данной патологии большую роль играет воздействие неблагоприятных факторов окружающей среды, в том числе пестицидов. Несмотря на широкий спектр используемых в сельском хозяйстве пестицидов, их молекулярные эффекты и канцерогенный потенциал изучены лишь в отношении небольшого числа моделей, включая нормальные клетки человека.
Цель исследования – изучить молекулярные эффекты пестицидов карбарила, хлорпирифоса, манкоцеба, тирама и пендиметалина в условно-нормальных клетках HaCaT и MCF10A.
Материалы и методы. Нетоксичные концентрации пестицидов определяли с помощью МТТ-теста. Генотоксичность анализировали методом ДНК-комет. Пролиферативный потенциал оценивали с помощью клоногенного анализа, изменение экспрессии генов, ассоциированных с канцерогенезом, – с использованием полимеразной цепной реакции в реальном времени.
Результаты. Карбарил вызывал повреждение ДНК в клетках MCF10A, способствовал пролиферации клеток обеих линий в клоногенном тесте, а также приводил к активации генов биотрансформации (AHR, GSTA4) в клетках MCF10A, репрессии (CYP1B1, GSTA4) в клетках HaCaT и снижению экспрессии генов воспаления (IL1a, IL1b, PTGES, IFNGR1). Хлорпирифос не показал генотоксического эффекта и не влиял на клоногенность, но вызывал индукцию генов биотрансформации (CYP1A1, CYP1B1), воспаления (IL1b, PTGES) и генов BCL2 и DNMTs. Манкоцеб и тирам не проявляли генотоксичности в клетках HaCaT и MCF10A, но активировали отдельные гены репарации (ATR/ATM). Тирам стимулировал пролиферацию клеток HaCaT в клоногенном тесте, а манкоцеб активировал экспрессию генов – регуляторов пролиферации (CCND2, CCNE1, Ki-67), но не влиял на рост колоний; оба фунгицида снижали экспрессию генов воспаления (COX2, IL1a, IL1b). Пендиметалин вызывал повреждение ДНК и активацию экспрессии генов репарации (ATR, GADD45a, PCNA) в клетках обеих линий, а также снижал экспрессию GLUT3 в клетках HaCaT и индуцировал экспрессию генов CYP1A1 в клетках HaCaT и CYP1B1 – в клетках MCF10A.
Заключение. В ходе комплексной оценки влияния пестицидов на нормальные человеческие клетки выявлено, что пендиметалин, хлорпирифос и карбарил оказывают наибольшее проканцерогенное действие.

Об авторах

Е. С. Лылова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

Россия, 115522 Москва, Каширское шоссе, 24



В. Г. Попова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

Россия, 115522 Москва, Каширское шоссе, 24



К. А. Зимин
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Россия, 115522 Москва, Каширское шоссе, 24;
Россия, 117513 Москва, ул. Островитянова, 1



А. Ю. Букина
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

Россия, 115522 Москва, Каширское шоссе, 24



В. А. Нуртдинова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

Россия, 115522 Москва, Каширское шоссе, 24



С. С. Шмаков
ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия

Россия, 119991 Москва, Ленинские горы, 1, стр. 12



М. Г. Якубовская
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

Россия, 115522 Москва, Каширское шоссе, 24



К. И. Кирсанов
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГАОУ ВО «Российский университет дружбы народов»
Россия

Россия, 115522 Москва, Каширское шоссе, 24; Россия, 117198 Москва, ул. Миклухо-Маклая, 6



В. П. Максимова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

Варвара Павловна Максимова 

Россия, 115522 Москва, Каширское шоссе, 24



Список литературы

1. World Health Organization. Global cancer burden growing, amidst mounting need for services. Available at: https://www.who.int/ru/news/item/01-02-2024-global-cancer-burden-growing--amidstmounting-need-for-services

2. Cancer Tomorrow – IARC. Estimated number of new cases from 2022 to 2050, Both sexes, age [0–85+]. Available at: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?years=2050

3. Wan N.F., Fu L., Dainese M. et al. Pesticides have negative effects on non-target organisms. Nat Commun 2025;16(1):1360. DOI: 10.1038/s41467-025-56732-x

4. Stockholm Convention. The 12 initial POPs under the Stockholm Convention. Available at: https://chm.pops.int/Convention/ThePOPs/The12initialPOPs/tabid/296

5. IARC. Agents classified by the IARC Monographs, Volumes 1–139. 2025. Available at: https://monographs.iarc.who.int/agentsclassified-by-the-iarc/

6. Food and Agriculture Organisation of the United Nations. Commission on Genetic Resources for Food and Agriculture. 2019. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/50b79369-9249-4486-ac07-9098d07df60a/content

7. IARC. Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2025–2029. 2024. Available at: https://www.iarc.who.int/news-events/advisory-grouprecommendations-on-priorities-for-the-iarc-monographsduring-2025-2029/

8. Smith M.T., Guyton K.Z., Gibbons C.F. et al. Key Characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 2016;124(6):713–21. DOI: 10.1289/ehp.1509912

9. Ataei M., Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicol Appl Pharmacol 2022;456:116280. DOI: 10.1016/j.taap.2022.116280

10. Shekhar C., Khosya R., Thakur K. et al. A systematic review of pesticide exposure, associated risks, and long-term human health impacts. Toxicol Rep 2024;13:101840. DOI: 10.1016/j.toxrep.2024.101840

11. Sule R.O., Condon L., Gomes A.V. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxid Med Cell Longev. 2022;2022:5563759. DOI: 10.1155/2022/5563759

12. Gunasekara A.S., Rubin A.L., Goh K.S. et al. Environmental fate and toxicology of carbaryl. Rev Environ Contam Toxicol. 2008;196:95-121. DOI: 10.1007/978-0-387-78444-1_4

13. De Roos A.J., Schinasi L.H., Miligi L. et al. Occupational insecticide exposure and risk of non-Hodgkin lymphoma: A pooled case-control study from the InterLymph Consortium. Int J Cancer 2021;149(10):1768-86. DOI: 10.1002/ijc.33740

14. Presutti R., Harris S.A., Kachuri L. et al. Pesticide exposures and the risk of multiple myeloma in men: An analysis of the North American Pooled Project. Int J Cancer 2016;139(8):1703–14. DOI: 10.1002/ijc.30218

15. Koutros S., Harris S.A., Spinelli J.J. et al. Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the north American pooled project. Environ Int 2019;127:199–205. DOI: 10.1016/j.envint.2019.03.018

16. Erickson P.A., Andreotti G., Remigio R.V. et al. Carbaryl use and incident cancer in the Agricultural Health Study: an updated analysis. Int J Hyg Environ Health 2025;268:114615. DOI: 10.1016/j.ijheh.2025.114615

17. Shukla Y., Antony M., Mehrotra N.K. Carcinogenic and cocarcinogenic studies with carbaryl following topical exposure in mice. Cancer Lett 1992;62(2):133–40. DOI: 10.1016/0304-3835(92)90183-v

18. Meeker J.D., Singh N.P., Ryan L. et al. Urinary levels of insecticide metabolites and DNA damage in human sperm. Hum Reprod 2004;19(11):2573–80. DOI: 10.1093/humrep/deh444

19. Nandi N.K., Vyas A., Akhtar M.J., Kumar B. The growing concern of chlorpyrifos exposures on human and environmental health. Pestic Biochem Physiol 2022;185:105138. DOI: 10.1016/j.pestbp.2022.105138

20. Lee W.J., Blair A., Hoppin J.A. et al. Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J Natl Cancer Inst 2004;96(23):1781–9. DOI: 10.1093/jnci/djh324

21. Tayour C., Ritz B., Langholz B. et al. A case-control study of breast cancer risk and ambient exposure to pesticides. Environ Epidemiol 2019;3(5):e070. DOI: 10.1097/EE9.0000000000000070

22. Ventura C., Nieto M.R., Bourguignon N. et al. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol Biol 2016;156:1–9. DOI: 10.1016/j.jsbmb.2015.10.010

23. Hazarika J., Ganguly M., Borgohain G. et al. Endocrine disruption: molecular interactions of chlorpyrifos and its degradation products with estrogen receptor. Structural Chemistry 2020;31:2011–21. DOI: 10.1007/s11224-020-01562-4

24. Leon M.E., Schinasi L.H., Lebailly P. et al. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol 2019;48(5):1519–35. DOI: 10.1093/ije/dyz017

25. Koutros S., Silverman D.T., Alavanja M.C. et al. Occupational exposure to pesticides and bladder cancer risk. Int J Epidemiol 2016;45(3):792–805. DOI: 10.1093/ije/dyv195

26. Dennis L.K., Lynch C.F., Sandler D.P., Alavanja M.C. Pesticide use and cutaneous melanoma in pesticide applicators in the agricultural heath study. Environ Health Perspect 2010;118(6):812–7. DOI: 10.1289/ehp.0901518

27. Piel C., Pouchieu C., Carles C. et al. Agricultural exposures to carbamate herbicides and fungicides and central nervous system tumour incidence in the cohort AGRICAN. Environ Int 2019;130:104876. DOI: 10.1016/j.envint.2019.05.070

28. Mills P.K., Yang R., Riordan D. Lymphohematopoietic cancers in the United Farm Workers of America (UFW), 1988–2001. Cancer Causes Control 2005;16(7):823–30. DOI: 10.1007/s10552-005-2703-2

29. Vighi M., Matthies M., Solomon K.R. Critical assessment of pendimethalin in terms of persistence, bioaccumulation, toxicity, and potential for long-range transport. J Toxicol Environ Health B Crit Rev 2017;20(1):1–21. DOI: 10.1080/10937404.2016.1222320

30. Hou L., Lee W.J., Rusiecki J. et al. Pendimethalin exposure and cancer incidence among pesticide applicators. Epidemiology 2006;17(3):302–7. DOI: 10.1097/01.ede.0000201398.82658.50

31. Andreotti G., Freeman L.E., Hou L. et al. Agricultural pesticide use and pancreatic cancer risk in the Agricultural Health Study Cohort. Int J Cancer 2009;124(10):2495–500. DOI: 10.1002/ijc.24185

32. Walsh K.D., Kato T.A. Alkaline comet assay to detect DNA damage. Methods Mol Biol 2023;2519:65–72. DOI: 10.1007/978-1-0716-2433-3_7

33. Guzman C., Bagga M., Kaur A. et al. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014;9(3):e92444. DOI: 10.1371/journal.pone.0092444

34. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25(4):402–8. DOI: 10.1006/meth.2001.1262

35. IARC. Certain polycyclic aromatic hydrocarbons and heterocyclic compounds. 1973. Available at: https://publications.iarc.who.int/Book-And-Report-Series/Iarc-Monographs-On-TheIdentification-Of-Carcinogenic-Hazards-To-Humans/CertainPolycyclic-Aromatic-Hydrocarbons-And-HeterocyclicCompounds-1973

36. Robles H. Methylcholanthrene, 3-. Available at: https://www.researchgate.net/publication/304034151_Methylcholanthrene_3-

37. Kawabe M., Urano K., Suguro M. et al. Tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in an ultra-short-term skin carcinogenesis bioassay using rasH2 mice. Vet Pathol 2013;50(5):903–8. DOI: 10.1177/0300985813486811

38. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984;308(5961):693–8. DOI: 10.1038/308693a0

39. Denison M.S., Phelan D., Winter G.M., Ziccardi M.H. Carbaryl, a carbamate insecticide, is a ligand for the hepatic Ah (dioxin) receptor. Toxicol Appl Pharmacol 1998;152(2):406–14. DOI: 10.1006/taap.1998.9999

40. Larigot L., Juricek L., Dairou J., Coumoul X. AhR signaling pathways and regulatory functions. Biochim Open 2018;7:1–9. DOI: 10.1016/j.biopen.2018.05.001

41. Ledirac N., Delescluse C., de Sousa G. et al. Carbaryl induces CYP1A1 gene expression in HepG2 and HaCaT cells but is not a ligand of the human hepatic Ah receptor. Toxicol Appl Pharmacol 1997;144(1):177–82. DOI: 10.1006/taap.1997.8120

42. Honkakoski P., Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 2000;347(Pt 2):321–37. DOI: 10.1042/0264-6021:3470321

43. Saquib Q., Siddiqui M.A., Ansari S.M. et al. Cytotoxicity and genotoxicity of methomyl, carbaryl, metalaxyl, and pendimethalin in human umbilical vein endothelial cells. J Appl Toxicol 2021;41(5):832–46. DOI: 10.1002/jat.4139

44. Fernandes R., Hosoya K., Pereira P. Reactive oxygen species downregulate glucose transport system in retinal endothelial cells. Am J Physiol Cell Physiol 2011;300(4):C927–36. DOI: 10.1152/ajpcell.00140.2010

45. Chen Y., Joo J., Chu J.M. et al. Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice. J Neuroinflammation 2023;20(1):237. DOI: 10.1186/s12974-023-02905-8

46. Jorsaraei S.G., Maliji G., Azadmehr A. et al. Immunotoxicity effects of carbaryl in vivo and in vitro. Environ Toxicol Pharmacol 2014;38(3):838–44. DOI: 10.1016/j.etap.2014.09.004

47. Seher Karsli S.Y., Esra F. İncedere düzdağ, Türkan yurdun. Assessment of genotoxic effects of organophosphate and carbamate pesticides by comet assay. İstanbul J Pharm 2022;52(2):136–42. DOI: 10.26650/IstanbulJPharm.2022.1057224

48. Thakur S., Dhiman M., Mantha A.K. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem 2018;441(1–2):201–16. DOI: 10.1007/s11010-017-3186-7

49. Balakrishnan P., Thirunavukarasu K., Tamizhmani P. Toxicological impact of chronic chlorpyrifos exposure: DNA damage and epigenetic alterations induces neoplastic transformation of liver cells. Biochem Biophys Res Commun 2025;746:151287. DOI: 10.1016/j.bbrc.2025.151287

50. Moyano P., Garcia J., Garcia J.M. et al. Chlorpyrifos-induced cell proliferation in human breast cancer cell lines differentially mediated by estrogen and aryl hydrocarbon receptors and KIAA1363 enzyme after 24 h and 14 days exposure. Chemosphere 2020;251:126426. DOI: 10.1016/j.chemosphere.2020.126426

51. Hevir N., Trost N., Debeljak N., Rizner T.L. Expression of estrogen and progesterone receptors and estrogen metabolizing enzymes in different breast cancer cell lines. Chem Biol Interact 2011; 191(1–3):206–16. DOI: 10.1016/j.cbi.2010.12.013

52. Lasagna M., Ventura C., Hielpos M.S. et al. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression. Environ Res 2022;204(Pt A):111989. DOI: 10.1016/j.envres.2021.111989

53. Moyano P., Garcia J.M., Garcia J. et al. Chlorpyrifos induces cell proliferation in MCF-7 and MDA-MB-231 cells, through cholinergic and Wnt/beta-catenin signaling disruption, AChE-R upregulation and oxidative stress generation after single and repeated treatment. Food Chem Toxicol 2021;152:112241. DOI: 10.1016/j.fct.2021.112241

54. Ventura C., Nunez M., Miret N. et al. Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol Lett 2012;213(2):184–93. DOI: 10.1016/j.toxlet.2012.06.017

55. Croom E.L., Wallace A.D., Hodgson E. Human variation in CYPspecific chlorpyrifos metabolism. Toxicology 2010;276(3):184–91. DOI: 10.1016/j.tox.2010.08.005

56. Montanari C., Franco-Campos F., Taroncher M. et al. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024;192:114933. DOI: 10.1016/j.fct.2024.114933

57. Radhey S. Verma A.M., Nalini Srivastava. In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology 2007;88(2):191–6. DOI: 10.1016/j.pestbp.2006.11.002

58. Lasagna M., Hielpos M.S., Ventura C. et al. Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. Ecotoxicol Environ Saf 2020;205:111312. DOI: 10.1016/j.ecoenv.2020.111312

59. Yahia D., El-Amir Y.O., Rushdi M. Mancozeb fungicide-induced genotoxic effects, metabolic alterations, and histological changes in the colon and liver of Sprague Dawley rats. Toxicol Ind Health 2019;35(4):265–76. DOI: 10.1177/0748233719834150

60. Pienkowska M., Zielenska M. Genotoxic effects of thiram evaluated by sister-chromatid exchanges in human lymphocytes. Mutat Res 1990;245(2):119–23. DOI: 10.1016/0165-7992(90)90010-h

61. Maksimova V., Bukina A., Khayrieva G. et al. Thiram effects on HeLa TI cells. Proceedings 2024;102(1):35. DOI: 10.3390/proceedings2024102035

62. Lori G., Tassinari R., Narciso L. et al. Toxicological Comparison of mancozeb and zoxamide fungicides at environmentally relevant concentrations by an in vitro approach. Int J Environ Res Public Health 2021;18(16):8591. DOI: 10.3390/ijerph18168591

63. Bhaskar R., Mishra A., Mohanty B. Effects of mancozeb and imidacloprid pesticides on activities of steroid biosynthetic enzymes cytochromes P450. J Kalash Sci 2014;2:1–6.

64. Dalvi P.S., Wilder-Ofie T., Mares B. et al. Toxicologic implications of the metabolism of thiram, dimethyldithiocarbamate and carbon disulfide mediated by hepatic cytochrome P450 isozymes in rats. Pesticide Biochemi Physiol 2002;74(2):85–90.

65. Dalvi P.S., Wilder-Ofie T., Mares B. et al. Effect of cytochrome P450 inducers on the metabolism and toxicity of thiram in rats. Vet Hum Toxicol 2002;44(6):331–3.

66. Kumar K., Sabarwal A., Singh R.P. Mancozeb selectively induces mitochondrial-mediated apoptosis in human gastric carcinoma cells through ROS generation. Mitochondrion 2019;48:1–10. DOI: 10.1016/j.mito.2018.06.003

67. Kurpios-Piec D., Grosicka-Maciag E., Wozniak K. et al. Thiram activates NF-kappaB and enhances ICAM-1 expression in human microvascular endothelial HMEC-1 cells. Pestic Biochem Physiol 2015;118:82–9. DOI: 10.1016/j.pestbp.2014.12.003

68. Sarigol Kilic Z., Aydin S., Undeger Bucurgat U., Basaran N. In vitro genotoxicity assessment of dinitroaniline herbicides pendimethalin and trifluralin. Food Chem Toxicol 2018;113:90–8. DOI: 10.1016/j.fct.2018.01.034

69. Ansari S.M., Saquib Q., Attia S.M. et al. Pendimethalin induces oxidative stress, DNA damage, and mitochondrial dysfunction to trigger apoptosis in human lymphocytes and rat bone-marrow cells. Histochem Cell Biol 2018;149(2):127–41. DOI: 10.1007/s00418-017-1622-0

70. Ahmad M.I., Zafeer M.F., Javed M., Ahmad M. Pendimethalininduced oxidative stress, DNA damage and activation of antiinflammatory and apoptotic markers in male rats. Sci Rep 2018;8(1):17139. DOI: 10.1038/s41598-018-35484-3

71. Lee H.S., Amarakoon D., Tamia G. et al. Pendimethalin induces apoptotic cell death through activating ER stress-mediated mitochondrial dysfunction in human umbilical vein endothelial cells. Food Chem Toxicol 2022;168:113370. DOI: 10.1016/j.fct.2022.113370

72. Ham J., Lim W., Song G. Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy. Environ Pollut 2021;278:116835. DOI: 10.1016/j.envpol.2021.116835

73. Sarigol-Kilic Z., Undeger-Bucurgat U. The Apoptotic and Antiapoptotic Effects of Pendimethalin and Trifluralin on A549 Cells In Vitro. Turk J Pharm Sci 2018;15(3):364–9. DOI: 10.4274/tjps.94695


Рецензия

Для цитирования:


Лылова Е.С., Попова В.Г., Зимин К.А., Букина А.Ю., Нуртдинова В.А., Шмаков С.С., Якубовская М.Г., Кирсанов К.И., Максимова В.П. Молекулярные эффекты пестицидов карбарила, хлорпирифоса, манкоцеба, тирама и пендиметалина в условно-нормальных клетках in vitro: генотоксичность, клоногенность и влияние на экспрессию генов, ассоциированных с канцерогенезом. Успехи молекулярной онкологии. 2025;12(3):116-131. https://doi.org/10.17650/2313-805X-2025-12-3-116-131

For citation:


Lylova E.S., Popova V.G., Zimin K.А., Bukina A.Yu., Nurtdinova V.A., Shmakov S.S., Yakubovskaya M.G., Kirsanov K.I., Maksimova V.P. Molecular effects of the pesticides carbaryl, chlorpyrifos, mancozeb, thiram, and pendimethalin in conditionally normal cells in vitro: genotoxicity, clonogenicity and effects on the expression of genes associated with carcinogenesis. Advances in Molecular Oncology. 2025;12(3):116-131. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-3-116-131

Просмотров: 5


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)