Preview

Advances in Molecular Oncology

Advanced search

Actin isoforms and neoplastic transformation

https://doi.org/10.17650/2313-805X-2017-4-1-8-16

Abstract

The cytoplasmic actins (β and γ) play crucial roles during key cellular processes like adhesion, migration, polarization and cytokinesis. The understanding of their specific underlying mechanisms would be of major relevance not only for fundamental research but also for clinical applications, since modulations of actin isoforms are directly or indirectly correlated with severe pathologies. The major goal of the research was to elucidate the function of the actin isoforms during motile activities, adhesions and cell division and to investigate whether their expression and/or structural organization is related to pathological function. Selective depletion of β- and γ-cytoplasmic actins allowed attributing functional diversities of β- and γ-сytoplasmic actins. β-Сytoplasmic actin plays a preferential role in contractile activities, whereas γ-cytoplasmic actin mainly participates in the formation of a submembranous network necessary for cell shape flexibility and motile activity. The roles of isoforms in regulating the integrity of adherens and tight junctions respectively were demonstrated. Unique roles of β- and γ-cytoplasmic actins in normal cells were shown. Similar results were obtained in cancer cells compared with normal epithelial cells in culture and in human pathological tissue sections of mammary gland, colon, lung and cervix. Malignant cell transformation requires changes in the ability of cells to migrate. The disruption of actin cytoskeleton and intercellular adhesions is an important component of the acquisition of invasive properties in epithelial malignancies.

About the Authors

V. B. Dugina
A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University
Russian Federation
1, Build. 40 Leninskie Gory, Moscow 119992, Russia


G. S. Shagieva
A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University
Russian Federation
1, Build. 40 Leninskie Gory, Moscow 119992, Russia


N. V. Khromova
Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


P. B. Kopnin
Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


References

1. Vandekerckhove J., Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 1978;126(4):783–802. DOI: 10.1016/0022-2836(78)90020-7.

2. Kabsch W., Vandekerckhove J. Structure and function of actin. Annu Rev Biophys Biomol Struct 1992;21:49–76. DOI: 10.1146/annurev.bb.21.060192.000405.

3. Gunning P., Ponte P., Kedes L. et al. Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc Natl Acad Sci U S A 1984;81(6):1813–7.

4. Hightower R.C., Meagher R.B. The molecular evolution of actin. Genetics 1986;114:315–32.

5. 5Garrels J.I., Gibson W. Identification and characterization of multiple forms of actin. Cell 1976;9(4 Pt 2):793–805.

6. Rubenstein P.A. The functional importance of multiple actin isoforms. Bioessays 1990;12:309–15. DOI: 10.1002/bies.950120702.

7. Schutt C.E., Myslik J.C., Rozycki M.D. et al. The structure of crystalline profilinbeta- actin. Nature 1993;365(6449):810–6. DOI: 10.1038/365810a0.

8. Sheterline P., Clayton J., Sparrow J. Actin. Protein Profile 1995;2(1):1–103.

9. Müller M., Diensthuber R.P., Chizhov I. et al. Distinct functional interactions between actin isoforms and nonsarcomeric myosins. PLoS One 2013;8(7):e70636. DOI: 10.1371/journal.pone.0070636.

10. Larsson H., Lindberg U. The effect of divalent cations on the interaction between calf spleen profilin and different actins. Biochim Biophys Acta 1988;953(1):95–105.

11. Ohshima S., Abe H., Obinata T. Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms. J Biochem 1989;105(6):855–7.

12. Weber A., Nachmias V.T., Pennise C.R. et al. Interaction of thymosin beta 4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochemistry 1992;31(27): 6179–85.

13. Namba Y., Ito M., Zu Y. et al. Human T cell L-plastin bundles actin filaments in a calcium- dependent manner. J Biochem 1992;112(4):503–7.

14. Shuster C.B., Herman I.M. Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity. J Cell Biol 1995;128(5):837–48.

15. Yao X., Cheng L., Forte J.G. Biochemical characterization of ezrin-actin interaction. J Biol Chem 1996;271(12):7224–9.

16. Shuster C.B., Lin A.Y., Nayak R., Herman I.M. Beta cap73: a novel beta actin-specific binding protein. Cell Motil Cytoskeleton 1996;35(3):175–87. DOI: 10.1002/(SICI)1097-0169(1996)35:3<175::AID-CM1>3.0.CO;2-8.

17. Winder S.J., Hemmings L., Maciver S.K. et al. Utrophin actin binding domain: analysis of actin binding and cellular targeting. J Cell Sci 1995;108(Pt 1):63–71.

18. Tzima E., Trotter P.J., Orchard M.A., Walker J.H. Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin. Eur J Biochem 2000;267(15):4720–30.

19. Gunning P., Weinberger R., Jeffrey P., Hardeman E. Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 1998;14:339–72. DOI: 10.1146/annurev.cellbio.14.1.339.

20. Manstein D.J., Mulvihill D.P. Tropomyosin-mediated regulation of cytoplasmic myosins. Traffic 2016;17(8):872–7. DOI: 10.1111/tra.12399.

21. von der Ecken J., Heissler S.M., Pathan-Chhatbar S. et al. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 2016;534(7609):724–8. DOI: 10.1038/nature18295.

22. Gunning P., Mohun T., Ng S.Y. et al. Evolution of the human sarcomeric-actin genes: evidence for units of selection within the 3’ untranslated regions of the mRNAs. J Mol Evol 1984;20(3–4): 202–14.

23. Yaffe D., Nudel U., Mayer Y., Neuman S. Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res 1985;13(10):3723–37.

24. Treisman R., Alberts A.S., Sahai E. Regulation of SRF activity by Rho family GTPases. Cold Spring Harb Symp Quant Biol 1998;63:643–51.

25. Posern G., Treisman R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 2006;16(11):588–96. DOI: 10.1016/j.tcb.2006.09.008.

26. Singer R.H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol 1992;4(1):15–9.

27. Gunning P., Hardeman E., Wade R. et al. Differential patterns of transcript accumulation during human myogenesis. Mol Cell Biol 1987;7(11):4100–14.

28. Latham V.M., Kislauskis E.H., Singer R.H., Ross A.F. Beta-actin mRNA localization is regulated by signal transduction mechanisms. J Cell Biol 1994;126(5):1211–9.

29. Oleynikov Y., Singer R.H. Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol 2003;13(3):199–207.

30. Kislauskis E.H., Li Z., Singer R.H., Taneja K.L. Isoform-specific 3’-untranslated sequences sort alphacardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol 1993;123(1):165–72.

31. Lawrence J.B., Singer R.H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 1986;45: 407–15.

32. Shestakova E.A., Singer R.H., Condeelis J. The physiological significance of betaactin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci U S A 2001;98(13):7045–50. DOI: 10.1073/pnas.121146098.

33. Ross A.F., Oleynikov Y., Kislauskis E.H. et al. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol 1997;17(4):2158–65.

34. Kislauskis E.H., Zhu X., Singer R.H. beta-Actin messenger RNA localization and protein synthesis augment cell motility. J Cell Biol 1997;136(6): 1263–70.

35. Wang W., Goswami S., Lapidus K. et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2004;64(23):8585–94. DOI: 10.1158/0008-5472.CAN-04-1136.

36. Condeelis J., Singer R.H. How and why does beta-actin mRNA target? Biol cell 2005;97(1):97–110. DOI: 10.1042/BC20040063.

37. Katz Z.B., Wells A.L., Park H.Y. et al. β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev 2012;26(17):1885–90. DOI: 10.1101/gad.190413.112.

38. Hill M.A., Gunning P. Beta and gamma actin mRNAs are differentially located within myoblasts. J Cell Biol 1993;122(4):825–32.

39. Hannan A.J., Gunning P., Jeffrey P.L., Weinberger R.P. Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 1998;11(5–6):289–304. DOI: 10.1006/mcne.1998.0693.

40. Karakozova M., Kozak M., Wong C.C. et al. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 2006;313(5784):192–6. DOI: 10.1126/science.1129344.

41. Kashina A.S. Differential arginylation of actin isoforms: the mystery of the actin N- terminus. Trends Cell Biol 2006;16(12):610–5. DOI: 10.1016/j.tcb.2006.10.001.

42. Wong C.C., Xu T., Rai R. et al. Global analysis of posttranslational protein arginylation. PLoS Biol 2007;5(10):e258. DOI: 10.1371/journal.pbio.0050258.

43. Zhang F., Saha S., Shabalina S.A., Kashina A. Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 2010;329(5998):1534–7. DOI: 10.1126/science.1191701.

44. Otey C.A., Kalnoski M.H., Bulinski J.C. Identification and quantification of actin isoforms in vertebrate cells and tissues. J Cell Biochem 1987;34(2):113–24. DOI: 10.1002/jcb.240340205.

45. Chaponnier C., Gabbiani G. Pathological situations characterized by altered actin isoform expression. J Pathol 2004;204(4):386–95. DOI: 10.1002/path.1635.

46. Lambrechts A., Van Troys M., Ampe C. The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 2004;36(10):1890–909. DOI: 10.1016/j.biocel.2004.01.024.

47. Shawlot W., Deng J.M., Fohn L.E., Behringer R.R. Restricted betagalactosidase expression of a hygromycinlacZ gene targeted to the beta-actin locus and embryonic lethality of beta-actin mutant mice. Transgenic Res 1998;7(2):95–103.

48. Perrin B.J., Ervasti J.M. The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 2010;67(10):630–4. DOI: 10.1002/cm.20475.

49. Belyantseva I.A., Perrin B.J., Sonnemann K.J. et al. Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci USA 2009;106:9703–8. DOI: 10.1073/pnas.0900221106.

50. Bunnell T.M., Ervasti J.M. Delayed embryonic development and impaired cell growth and survival in ACTG1 null mice. Cytoskeleton (Hoboken) 2010;67(9):564–72. DOI: 10.1002/cm.20467.

51. Dugina V., Zwaenepoel I., Gabbiani G. et al. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci 2009;122(Pt 16): 2980–8. DOI: 10.1242/jcs.041970.

52. Franke W.W., Stehr S., Stumpp S. et al. Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells. Differentiation 1996;60(4):245–50. DOI: 10.1046/j.1432-0436.1996.6040245.x.

53. Шагиева Г.С., Домнина Л.В., Чипышева Т.А. и др. Реорганизация изоформ актина и адгезионных контактов при эпителиально-мезенхимальном переходе в клетках цервикальных карцином. Биохимия 2012;77(11):1513–25. [Shagieva G.S., Domnina L.V., Chipysheva T.A. et al. Actin isoforms and reorganization of adhesion junctions in epithelial- to-mesenchymal transition of cervical carcinoma cells. Biokhimiya = Biochemistry 2012;77(11):1513–25. (In Russ.)].

54. Baranwal S., Naydenov N.G., Harris G. et al. Nonredundant roles of cytoplasmic β- and γ- actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell 2012;23(18):3542– 53. DOI: 10.1091/mbc.E12-02-0162.

55. Дугина В.Б., Чипышева Т.А., Ермилова В.Д. и др. Распределение изоформ актина в клетках нормальной, диспластической и опухолевой ткани молочной железы. Архив патологии 2008;(70):28–31. [Dugina V.B., Chipysheva T.A., Ermilova V.D. et al. Distribution of actin isoforms in normal, dysplastic and cancer breast cells. Arkhiv patologii = Pathology Archive 2008;70(2):28–31. (In Russ.)].

56. Dugina V., Arnoldi R., Janmey P.A. Chaponnier C. Actin. In: The Cytoskeleton and Human Disease. Ed. by M. Cavallaris. Humana Press- Springer, 2012. Pp. 3–28.

57. Brockmann C., Huarte J., Dugina V. et al. Beta- and gamma-cytoplasmic actins are required for meiosis in mouse oocytes. Biol Reprod 2011;85(5):1025–39. DOI: 10.1095/biolreprod.111.091736.

58. Pokorná E., Jordan P.W., O’Neill C.H. et al. Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential. Cell Motil Cytoskeleton 1994;28(1):25– 33. DOI: 10.1002/cm.970280103.

59. Sahai E., Marshall C.J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003;5(8):711–9. DOI: 10.1038/ncb1019.

60. Leavitt J., Gunning P., Kedes L., Jariwalla R. Smooth muscle alpha-action is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. Nature 1985;316(6031):840–2.

61. Witt D.P., Brown D.J., Gordon J.A. Transformation-sensitive isoactin in passaged chick embryo fibroblasts transformed by Rous sarcoma virus. J Cell Biol 1983;96(6):1766–71.

62. Okamoto-Inoue M., Taniguchi S., Sadano H. et al. Alteration in expression of smooth muscle alpha-actin associated with transformation of rat 3Y1 cells. J Cell Sci 1990;96(Pt 4):631–7.

63. Vandekerckhove J., Leavitt J., Kakunaga T., Weber K. Coexpression of a mutant betaactin and the two normal beta- and gamma-cytoplasmic actins in a stably transformed human cell line. Cell 1980;22(3):893–9.

64. Leavitt J., Ng S.Y., Aebi U. et al. Expression of transfected mutant betaactin genes: alterations of cell morphology and evidence for autoregulation in actin pools. Mol Cell Biol 1987;7(7):2457–66.

65. Sadano H., Taniguchi S., Kakunaga T., Baba T. cDNA cloning and sequence of a new type of actin in mouse B16 melanoma. J Biol Chem 1988;263(31):15868–71.

66. Lapidus K., Wyckoff J., Mouneimne G. et al. ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci 2007;120(Pt 18):3173–8. DOI: 10.1242/jcs.000638.

67. Shum M.S., Pasquier E., Po’uha S.T. et al. γ-Actin regulates cell migration and modulates the ROCK signaling pathway. FASEB J 2011;25(12):4423–33. DOI: 10.1096/fj.11-185447.

68. Tondeleir D., Lambrechts A., Müller M. et al. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics 2012;11(8):255–71. DOI: 10.1074/mcp.M111.015099.

69. Pawlak G., Helfman D.M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 2001;11(1):41–7.

70. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A 1975;72(3):994–8.

71. Rubin R.W., Warren R.H., Lukeman D.S., Clements E. Actin content and organization in normal and transformed cells in culture. J Cell Biol 1978;78(1):28–35.

72. Verderame M., Alcorta D,. Egnor M. et al. Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells. Proc Natl Acad Sci U S A 1980;77(11):6624–8.

73. Shagieva G., Domnina L., Makarevich O. et al. Depletion of mitochondrial reactive oxygen species downregulates epithelialto- mesenchymal transition in cervical cancer cells. Oncotarget 2017;8(3):4901– 13, in print.

74. Дугина В.Б., Ермилова В.Д., Чемерис Г.Ю., Чипышева Т.А. Актины и кератины в диагностике базальноподобного рака молочной железы человека. Архив патологии 2010;(72):12–5. [Dugina V.B., Ermilova V.D., Chemeris G.Yu., Chipysheva T.A. Actins and keratins in diagnostics of human basal-like breast cancer. Arkhiv patologii = Pathology Archive 2010;72(2):12–5. (In Russ.)].

75. Агапова Л.С., Черняк Б.В., Домнина Л.В. и др. Производное пластохинона, адресованное в митохондрии как средство, прерывающее программу старения. SKQ1 подавляет развитие опухолей из P53-дефицитных клеток. Биохимия 2008;73(12):1300– 16. [Agapova L.S., Chernyak B.V., Domnina L.V. et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. Inhibitory effect of SKQ1 on tumor development from P53-deficient cells. Biokhimiya = Biochemistry 2008;73(12):1300–16. (In Russ.)].

76. Dugina V., Khromova N., Rybko V. et al. Tumor promotion by γ and suppression by β non- muscle actin isoforms. Oncotarget 2015;6(16):14556–71. DOI: 10.18632/oncotarget.3989.

77. Dugina V., Alieva I., Khromova N. et al. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1- containing + TIPs and γ-actin in epithelial cells. Oncotarget 2016;7(45):72699–715. DOI: 10.18632/oncotarget.12236.


Review

For citations:


Dugina V.B., Shagieva G.S., Khromova N.V., Kopnin P.B. Actin isoforms and neoplastic transformation. Advances in Molecular Oncology. 2017;4(1):8-16. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-1-8-16

Views: 2366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)