Preview

Успехи молекулярной онкологии

Расширенный поиск

Тимидинкиназа 1 как потенциальный опухолеассоциированный маркер: структура, функции, активность в нормальных и опухолевых тканях

https://doi.org/10.17650/2313-805X-2017-4-1-17-23

Полный текст:

Аннотация

В обзоре представлены данные о роли тимидинкиназы (ТК) в обеспечении репликации ДНК de novo и посредством запасного (salvage) пути в норме, а также при активации запасного пути при канцерогенезе. Описаны структура цитоплазматической ТК (ТК-1), называемой также фетальной, регуляция ее уровня и активности в клетках и их изменения на протяжении клеточного цикла. С учетом данных об отсутствии ТК-1 в покоящихся (G0) клетках она позиционируется в литературе как маркер пролиферирующих клеток, активность которого регистрируется, начиная с поздней G1‑фазы и достигая максимума в S-фазе, сохраняется в G2‑фазе и митозе, быстро снижается до неопределяемых значений в ранней G1‑фазе. Систематизированы данные об экспрессии ТК-1 (в сопоставлении с Ki-67 и PCNA (proliferating cell nuclear antigen)) в опухолевых тканях (при колоректальном раке, раке молочной железы, шейки матки, легкого, почки, предстательной железы, яичников), а также при некоторых доброкачественных и предопухолевых патологических процессах в сопоставлении с их клинико-диагностическими характеристиками. Представленные данные свидетельствуют о том, что исследования индекса пролиферации по ТК-1 (с антителами к домену XPA-210) целесообразно использовать наряду с Ki-67 и PCNA для более полной оценки пролиферативного статуса злокачественных новообразований, а также предраковых и доброкачественных состояний в целях прогнозирования течения опухолевого процесса и планирования тактики лечения.

Об авторах

Н. С. Сергеева
Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиала ФГБУ «Национальный медицинский исследовательский радиологический центр» Минздрава России ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Отделение прогноза эффективности консервативного лечения

Россия, 125284 Москва, 2-й Боткинский проезд, 3

Россия, 117997 Москва, ул. Островитянова, 1



Н. К. Парилова
Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиала ФГБУ «Национальный медицинский исследовательский радиологический центр» Минздрава России
Россия

Отделение прогноза эффективности консервативного лечения

Россия, 125284 Москва, 2-й Боткинский проезд, 3



Н. В. Маршутина
Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиала ФГБУ «Национальный медицинский исследовательский радиологический центр» Минздрава России
Россия

Отделение прогноза эффективности консервативного лечения

Россия, 125284 Москва, 2-й Боткинский проезд, 3



И. С. Мейснер
ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
Россия, 117997 Москва, ул. Островитянова, 1


Список литературы

1. Силаева С.А. Раздел 10. Обмен нуклеотидов. В кн.: Биохимия. Учебник для вузов. Под ред. Е.С. Северина, 2003. 779 с. С. 521–44. [Silaeva S.A. Section 10. Nucleotide metabolism. In: Biochemistry. University textbook. Ed. by E.S. Severin, 2003. 779 p. Pp. 521– 44. (In Russ.)].

2. Welin M., Kosinska U., Mikkelsen N.-E. et al. Structures of thymidine kinase 1 of human and mycoplasma origin. Proc Natl Acad Sci U S A 2004;101(52): 17970–5.

3. Jordan A., Reichard P. Ribonucleotide reductases. Annu Rev Biochem 1998;67:71–98.

4. Arner E.S., Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995;67(2):155–86. DOI: 10.1016/0163-7258(95)00015-9.

5. Bello L.J. Regulation of thymidine kinase synthesys in human cells. Exp Cell Res 1974;89(2):263–74.

6. Munch-Petersen B., Tyrsted G. Induction of thymidine kinases in phytohaemagglutinin- stimulated human lymphocytes. Biochim Biophys Acta 1977;478(3): 364–75.

7. Sherley J.L., Kelly T.J. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988;263(17):8350–8.

8. Segura-Pena D., Lichter J., Trani M. et al. Quaternary structure change as a mechanism for the regulation of thymidine kinase 1-like enzymes. Structure 2007;15(12):1555–66. DOI: 10.1016/j.str.2007.09.025. PMID: 18073106.

9. Kornberg A., Lehman I.R., Simms E.S. Polydeoxyribosides in the synthesis of polynucleotides. Fed Proc 1956;15: 291–2.

10. Reichard P., Estborn B. Utilization of desoxyribosides in the synthesis of polynucleotides. J Biol Chem 1951;188(2):839–46. PMID: 14824173.

11. Mathews C.K. Enzymatic channeling of DNA precursors. Basic Life Sci 1985;31:47–66.

12. Leeds J.M., Mathews C.K. Cell cycledependent effects on deoxyribonucleotide and DNA labeling by nucleoside precursors in mammalian cells. Mol Cell Biol 1987;7(1):532–4.

13. Nicander B., Reichard P. Dynamics of pyrimidine deoxynucleoside triphosphate pools in relationship to DNA synthesis in 3T6 mouse fibroblasts. Proc Natl Acad Sci U S A 1983;80(5): 1347–51.

14. Bollum F.J., Van Potter R. Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues. J Biol Chem 1958;233:478–82.

15. Bollum F.J., Van Potter R. Nucleic acid metabolism in regenerating rat liver. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res 1959;19:561–5.

16. Weissman S.M., Smellie R.M., Paul J. Studies on the biosynthesis of deoxyribonucleic acid by extracts of mammalian cells. IV. The phosphorylation of thymidine. Biochim Biophys Acta 1960;45:101–10.

17. Okazaki R., Kornberg A. Deoxythymidine kinase of Escherichia coli. I. Purification and some properties of the enzyme. J Biol Chem 1964; 239:269–74.

18. Hotta Y., Stern H. Molecular facets of mitotic regulation 1. Synthesis of thymidine kinase. Proc Natl Acad Sci U S A 1963;49(5):648–54.

19. Chello P.L., Jaffe J.J. Comparative properties of trypanosomal and mammalian thymidine kinases. Comp Biochem Physiol 1972;43(3):543–62.

20. Kit S., Dubbs D.R. Acquisition of thymidine kinase activity by Herpes simplex infected mouse fibroblast cells. Biochem Biophys Res Commun 1963;11:55–9.

21. Littlefield J.W. The periodic synthesis of thymidine kinase in mouse fibroblasts. Biochim Biophys Acta 1966;114(2): 398–403.

22. Berk A.J., Clayton D.A. A genetically distinct thymidine kinase in mammalian mitochondria. Exclusive labeling of mitochondrial deoxyribonucleic acid. J Biol Chem 1973;248(8):2722–9.

23. Berk A.J., Meyer B.J., Clayton D.A. Mitochondrial-specific thymidine kinase. Arch Biochem Biophys 1973;154(2): 563–5.

24. Elsevier S.M., Kucherlapati R.S., Nichols E.A. et al. Assignment of the gene for galactokinase to human chromosome 17 and its regional localisation to band q21-22. Nature 1974;251(5476):633–6.

25. Kuo W.L., Hirschhorn R., Huie M.L., Hirschhorn K. Localization and ordering of acid alpha- glucosidase (GAA) and thymidine kinase (TK1) by fluorescence in situ hybridization. Hum Genet 1996;97(3):404–6.

26. Schoen R.C., Cox S.H., Wagner R.P. Thymidine-kinase activity of cultured cells from individuals with inherited galactokinase deficiency. Am J Hum Genet 1984;36(4):815–22.

27. Bradshaw H.D. Jr, Deininger P.L. Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells. Mol Cell Biol 1984;4(11):2316–20.

28. Murphy P.D., Kidd J.R., Castiglione C.M. et al. A frequent polymorphism for the cytosolic thymidine kinase gene, TK1, (17q21–q22) detected by the enzyme TaqI. Nucleic Acids Res 1986;14(10):4381.

29. Dutrillaux B., Muleris M. Induction of increased salvage pathways of nucleotide synthesis by dosage effect due to chromosome imbalances may be fundamental in carcinogenesis: the example of colorectal carcinoma. Ann Genet 1986;29(1):11–5.

30. Hanan S., Jagarlamudi K.K., Liya W. et al. Quaternary structures of recombinant, cellular, and serum forms of thymidine kinase 1 from dogs and humans. BMC Biochem 2012;13:12. DOI: 10.1186/1471-2091-13-12. PMID: 22741536.

31. Karlström A.R., Neumüller M., Gronowitz J.S., Källander C.F. Molecular forms in human serum of enzymes synthesizing DNA precursors and DNA. Mol Cell Biochem 1990;92(1):23–35.

32. Birringer M.S., Claus M.T., Folkers G. et al. Structure of a type II thymidine kinase with bound dTTP. FEBS Lett 2005;579(6):1376–82. DOI: 10.1016/j.febslet.2005.01.034.

33. Munch-Petersen B., Cloos L., Jensen H.K., Tyrsted G. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.

34. Li C.L., Lu C.Y., Ke P.Y., Chang Z.F. Perturbation of ATP-induced tetramerization of human cytosolic thymidine kinase by substitution of serine-13 with aspartic acid at the mitotic phosphorylation site. Biochem Biophys Res Commun 2004;313(3):587–93.

35. He Q., Wang N., Skog S. et al. Characterization of a peptide antibody against a Cterminal part of human and mouse cytosolic thymidine kinase, which is a marker for cell proliferation. Eur J Cell Biol 1996;70(2):117–24.

36. Wang N., He Q., Skog S. et al. Investigation on cell proliferation with new antibody against thymidine kinase 1. Anal Cell Pathol 2001;23(1):11–9.

37. Wu C., Yang R., Zhou J. et al. Production and characterisation of a novel chicken IgY antibody raised against C-terminal peptide from human thymidine kinase 1. J Immunol Methods 2003;277(1–2): 157–69.

38. Eriksson S. New exposed proliferation related peptide, ligands and methods employing the same. PCT application WO 2008:142664.

39. Gasparri F., Wang N., Skog S. et al. Thymidine kinase 1 expression defines as activated G1 state of cell cycle as revealed with site-specific antibodies and ArrayScan assays. Eur J Cell Biol 2009;88(12):779–85.

40. Coppock D.L., Pardee A.B. Control of thymidine kinase mRNA during the cell cycle. Mol Cell Biol 1987;7(8):2925–32.

41. Gerdes J., Schwab U., Lemke H., Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 1983;31(1):13–20.

42. Gross M.K., Kainz M.S., Merrill G.F. The chicken thymidine kinase gene is transcriptionally repressed during terminal differentiation: the associated decline in TK mRNA cannot account fully for the disappearance of TK enzyme activity. Dev Biol 1987;122(2):439–51.

43. Kauffman M.G., Kelly T.J. Cell cycle regulation of thymidine kinase: residues near the carboxyl terminus are essential for the specific degradation of the enzyme at mitosis. Mol Cell Biol 1991;11(5):2538– 46.

44. Sutterluety H., Bartl S., Karlseder J. et al. Carboxy-terminal residues of mouse thymidine kinase are essential for rapid degradation in quiescent cells. J Mol Biol 1996;259(3):383–92.

45. Hu C.M., Chang Z.F. Mitotic control of dTTP pool: a necessity or coincidence? J Biomed Sci 2007;14(4):491–7.

46. Ke P.Y., Kuo Y.Y., Hu C.M., Chang Z.F. Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev 2005;19(16):1920–33.

47. Dobrovolsky V.N., Bucci T., Heflich R.H. et al. Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease. Mol Genet Metab 2003;78(1):1–10.

48. Ke P.Y., Chang Z.F. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/ cyclosome-CDH1-mediated pathway. Mol Cell Biol 2004;24(2):514–26.

49. Zhou J., He E., Skog S. The proliferation marker thymidine kinase 1 in clinical use. Mol Clin Oncol 2013;1(1):18–28.

50. Kuroiwa N., Nakayama M., Fukuda T. et al. Specific recognition of cytosolic thymidine kinase in the human lung tumor by monoclonal antibodies raised against recombinant human thymidine kinase. J Immunol Methods 2001;253(1–2):1–11.

51. Mao Y., Wu J., Wang N. et al. A comparative study: immunohistochemical detection of cytosolic thymidine kinase and proliferating cell nuclear antigen in breast cancer. Cancer Invest 2002;20(7–8): 922–31.

52. He Q., Mao Y., Wu J. et al. Cytosolic thymidine kinase is a specific histopathologic tumour marker for breast carcinomas. Int J Oncol 2004;25(4):945–53.

53. Guan H., Sun Y., Zan Q. et al. Thymidine kinase 1 expression in atypical ductal hyperplasia significantly differs from usual ductal hyperplasia and ductal carcinoma in situ: A useful tool in tumor therapy management. Mol Med Rep 2009;2(6):923–9. DOI: 10.3892/mmr_00000193.

54. Chen G., He C., Li L. et al. Nuclear TK1 expression is an independent prognostic factor for survival in pre-malignant and malignant lesions of the cervix. BMC Cancer 2013;13:249. DOI: 10.1186/1471-2407-13-249.

55. Liu C., Gao Q., Shi Q.L. et al. Significance of TK1 and Ki-67 expression in ovarian serous adenocarcinoma. J Clin Exp Pathol 2011;27:1289–93.

56. Mao Y., Wu J., Skog S. et al. Expression of cell proliferating genes in patients with non- small cell lung cancer by immunohistochemistry and cDNA profiling. Oncol Rep 2005;13(5): 837–46.

57. Xu Y., Liu B., Shi Q.L. et al. Thymidine kinase 1 is a better prognostic marker than Ki-67 for pT1 adenocarcinoma of the lung. Int J Clin Exp Med 2014;7(8):2120–8.

58. Xu Y., Shi Q.L., Ma H. et al. High thymidine kinase 1 (TK1) expression is a predictor of poor survival in patients with pT1 of lung adenocarcinoma. Tumour Biol 2012;33(2):475–83. DOI: 10.1007/s13277-011-0276-0.

59. Wu J., Mao Y., He L. et al. A new cell proliferating marker: cytosolic thymidine kinase as compared to proliferating cell nuclear antigen in patients with colorectal carcinoma. Anticancer Res 2000;20(6C):4815–20.

60. Wei J.W., Xu C.R., Zen D.Z., Chen Y. Analysis on the content of TK1 of patients with colonic polyps. Lab Med Clin 2011;8:769.

61. Gakis G., Hennenlotter J., Scharpf M. et al. XPA210: a new proliferation marker to characterize tumor biology and progression of renal cell carcinoma. World J Urol 2011;29(6):801–6. DOI: 10.1007/s00345-010-0621-8.

62. Kruck S., Hennenlotter J., Vogel U. et al. Exposed proliferation antigen 210 (XPA- 210) in renal cell carcinoma (RCC) and oncocytoma: clinical utility and biological implications. BJU Int 2012;109(4):634–8. DOI: 10.1111/j.1464-410X.2011.10392.x.

63. Luo P., Wang N., He E. et al. The proliferation marker thymidine kinase 1 level is high in normal kidney tubule cells compared to other normal and malignant renal cells. Pathol Oncol Res 2010;16(2):277–83. DOI: 10.1007/s12253-009-9222-5.

64. Rausch S., Hennenlotter J., Teepe K. et al. Muscle-invasive bladder cancer is characterized by overexpression of thymidine kinase 1. Urol Oncol 2015;33(10):426.e21–9. DOI: 10.1016/j.urolonc.2015.06.007.

65. Ye F.P., Xie Q.L., Liu X.L. et al. Expression of TK1 and Ki67 in prostate diseases. J Clin Exp Pathol 2008;24:644–67.

66. Aufderklamm S., Hennenlotter J., Todenhoefer T. et al. XPA-210: a new proliferation marker determines locally advanced prostate cancer and is a predictor of biochemical recurrence. World J Urol 2012;30(4):547–52. DOI: 10.1007/s00345-011-0768-y.


Для цитирования:


Сергеева Н.С., Парилова Н.К., Маршутина Н.В., Мейснер И.С. Тимидинкиназа 1 как потенциальный опухолеассоциированный маркер: структура, функции, активность в нормальных и опухолевых тканях. Успехи молекулярной онкологии. 2017;4(1):17-23. https://doi.org/10.17650/2313-805X-2017-4-1-17-23

For citation:


Sergeeva N.S., Parilova N.K., Marshutina N.V., Meysner I.S. The thymidine kinase-1 as a potential tumor marker: structure, function, activity in normal and malignant tissues. Advances in molecular oncology. 2017;4(1):17-23. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-1-17-23

Просмотров: 2239


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)