Preview

Advances in Molecular Oncology

Advanced search

The thymidine kinase-1 as a potential tumor marker: structure, function, activity in normal and malignant tissues

https://doi.org/10.17650/2313-805X-2017-4-1-17-23

Abstract

In the review the role of the thymidine kinase (TK) to ensure the replication of DNA de novo and spare (salvage the) way in health and activate alternate ways in carcinogenesis is described. The structure of cytoplasmic TK (TК-1), also called fetal, and the level of regulation of its activity in the cells and their change during the cell cycle is described. Considering the data about the absence of TK-1 in resting (G0) cells, TK-1 is positioned as a marker of proliferating cells, which activity is recorded from late G1 phase, peaking in S-phase, it is stored in the G2 and mitosis, quickly decreasing to undetectable levels in the early G1 phase. Data on the expression TK-1 (as compared with Ki-67 and PCNA (proliferating cell nuclear antigen)) in tumor tissues (colorectal, breast, cervical, lung, renal, prostate and ovarian cancer), as well as some benign and precancerous pathological processes in relation to the clinical and diagnostic features of these processes are systemized. These data suggest that the proliferative index studies on TK-1 (antibody to the domain HRA-210) should be used together with Ki-67 and PCNA, for a more complete assessment of the proliferative status of malignant tumors and pre-cancerous and benign conditions, with the aim of prognosis of the tumor process and treatment planning.

About the Authors

N. S. Sergeeva
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Center, Ministry of Health of Russia N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

Department of Conservative Treatment Prognosis

3 2nd Botkinskiy Proezd, Moscow 125284, Russia

1 Ostrovityanovа St., Moscow 117997, Russia



N. K. Parilova
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

Department of Conservative Treatment Prognosis

3 2nd Botkinskiy Proezd, Moscow 125284, Russia



N. V. Marshutina
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

Department of Conservative Treatment Prognosis

3 2nd Botkinskiy Proezd, Moscow 125284, Russia



I. S. Meysner
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation
1 Ostrovityanovа St., Moscow 117997, Russia


References

1. Силаева С.А. Раздел 10. Обмен нуклеотидов. В кн.: Биохимия. Учебник для вузов. Под ред. Е.С. Северина, 2003. 779 с. С. 521–44. [Silaeva S.A. Section 10. Nucleotide metabolism. In: Biochemistry. University textbook. Ed. by E.S. Severin, 2003. 779 p. Pp. 521– 44. (In Russ.)].

2. Welin M., Kosinska U., Mikkelsen N.-E. et al. Structures of thymidine kinase 1 of human and mycoplasma origin. Proc Natl Acad Sci U S A 2004;101(52): 17970–5.

3. Jordan A., Reichard P. Ribonucleotide reductases. Annu Rev Biochem 1998;67:71–98.

4. Arner E.S., Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995;67(2):155–86. DOI: 10.1016/0163-7258(95)00015-9.

5. Bello L.J. Regulation of thymidine kinase synthesys in human cells. Exp Cell Res 1974;89(2):263–74.

6. Munch-Petersen B., Tyrsted G. Induction of thymidine kinases in phytohaemagglutinin- stimulated human lymphocytes. Biochim Biophys Acta 1977;478(3): 364–75.

7. Sherley J.L., Kelly T.J. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988;263(17):8350–8.

8. Segura-Pena D., Lichter J., Trani M. et al. Quaternary structure change as a mechanism for the regulation of thymidine kinase 1-like enzymes. Structure 2007;15(12):1555–66. DOI: 10.1016/j.str.2007.09.025. PMID: 18073106.

9. Kornberg A., Lehman I.R., Simms E.S. Polydeoxyribosides in the synthesis of polynucleotides. Fed Proc 1956;15: 291–2.

10. Reichard P., Estborn B. Utilization of desoxyribosides in the synthesis of polynucleotides. J Biol Chem 1951;188(2):839–46. PMID: 14824173.

11. Mathews C.K. Enzymatic channeling of DNA precursors. Basic Life Sci 1985;31:47–66.

12. Leeds J.M., Mathews C.K. Cell cycledependent effects on deoxyribonucleotide and DNA labeling by nucleoside precursors in mammalian cells. Mol Cell Biol 1987;7(1):532–4.

13. Nicander B., Reichard P. Dynamics of pyrimidine deoxynucleoside triphosphate pools in relationship to DNA synthesis in 3T6 mouse fibroblasts. Proc Natl Acad Sci U S A 1983;80(5): 1347–51.

14. Bollum F.J., Van Potter R. Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues. J Biol Chem 1958;233:478–82.

15. Bollum F.J., Van Potter R. Nucleic acid metabolism in regenerating rat liver. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res 1959;19:561–5.

16. Weissman S.M., Smellie R.M., Paul J. Studies on the biosynthesis of deoxyribonucleic acid by extracts of mammalian cells. IV. The phosphorylation of thymidine. Biochim Biophys Acta 1960;45:101–10.

17. Okazaki R., Kornberg A. Deoxythymidine kinase of Escherichia coli. I. Purification and some properties of the enzyme. J Biol Chem 1964; 239:269–74.

18. Hotta Y., Stern H. Molecular facets of mitotic regulation 1. Synthesis of thymidine kinase. Proc Natl Acad Sci U S A 1963;49(5):648–54.

19. Chello P.L., Jaffe J.J. Comparative properties of trypanosomal and mammalian thymidine kinases. Comp Biochem Physiol 1972;43(3):543–62.

20. Kit S., Dubbs D.R. Acquisition of thymidine kinase activity by Herpes simplex infected mouse fibroblast cells. Biochem Biophys Res Commun 1963;11:55–9.

21. Littlefield J.W. The periodic synthesis of thymidine kinase in mouse fibroblasts. Biochim Biophys Acta 1966;114(2): 398–403.

22. Berk A.J., Clayton D.A. A genetically distinct thymidine kinase in mammalian mitochondria. Exclusive labeling of mitochondrial deoxyribonucleic acid. J Biol Chem 1973;248(8):2722–9.

23. Berk A.J., Meyer B.J., Clayton D.A. Mitochondrial-specific thymidine kinase. Arch Biochem Biophys 1973;154(2): 563–5.

24. Elsevier S.M., Kucherlapati R.S., Nichols E.A. et al. Assignment of the gene for galactokinase to human chromosome 17 and its regional localisation to band q21-22. Nature 1974;251(5476):633–6.

25. Kuo W.L., Hirschhorn R., Huie M.L., Hirschhorn K. Localization and ordering of acid alpha- glucosidase (GAA) and thymidine kinase (TK1) by fluorescence in situ hybridization. Hum Genet 1996;97(3):404–6.

26. Schoen R.C., Cox S.H., Wagner R.P. Thymidine-kinase activity of cultured cells from individuals with inherited galactokinase deficiency. Am J Hum Genet 1984;36(4):815–22.

27. Bradshaw H.D. Jr, Deininger P.L. Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells. Mol Cell Biol 1984;4(11):2316–20.

28. Murphy P.D., Kidd J.R., Castiglione C.M. et al. A frequent polymorphism for the cytosolic thymidine kinase gene, TK1, (17q21–q22) detected by the enzyme TaqI. Nucleic Acids Res 1986;14(10):4381.

29. Dutrillaux B., Muleris M. Induction of increased salvage pathways of nucleotide synthesis by dosage effect due to chromosome imbalances may be fundamental in carcinogenesis: the example of colorectal carcinoma. Ann Genet 1986;29(1):11–5.

30. Hanan S., Jagarlamudi K.K., Liya W. et al. Quaternary structures of recombinant, cellular, and serum forms of thymidine kinase 1 from dogs and humans. BMC Biochem 2012;13:12. DOI: 10.1186/1471-2091-13-12. PMID: 22741536.

31. Karlström A.R., Neumüller M., Gronowitz J.S., Källander C.F. Molecular forms in human serum of enzymes synthesizing DNA precursors and DNA. Mol Cell Biochem 1990;92(1):23–35.

32. Birringer M.S., Claus M.T., Folkers G. et al. Structure of a type II thymidine kinase with bound dTTP. FEBS Lett 2005;579(6):1376–82. DOI: 10.1016/j.febslet.2005.01.034.

33. Munch-Petersen B., Cloos L., Jensen H.K., Tyrsted G. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.

34. Li C.L., Lu C.Y., Ke P.Y., Chang Z.F. Perturbation of ATP-induced tetramerization of human cytosolic thymidine kinase by substitution of serine-13 with aspartic acid at the mitotic phosphorylation site. Biochem Biophys Res Commun 2004;313(3):587–93.

35. He Q., Wang N., Skog S. et al. Characterization of a peptide antibody against a Cterminal part of human and mouse cytosolic thymidine kinase, which is a marker for cell proliferation. Eur J Cell Biol 1996;70(2):117–24.

36. Wang N., He Q., Skog S. et al. Investigation on cell proliferation with new antibody against thymidine kinase 1. Anal Cell Pathol 2001;23(1):11–9.

37. Wu C., Yang R., Zhou J. et al. Production and characterisation of a novel chicken IgY antibody raised against C-terminal peptide from human thymidine kinase 1. J Immunol Methods 2003;277(1–2): 157–69.

38. Eriksson S. New exposed proliferation related peptide, ligands and methods employing the same. PCT application WO 2008:142664.

39. Gasparri F., Wang N., Skog S. et al. Thymidine kinase 1 expression defines as activated G1 state of cell cycle as revealed with site-specific antibodies and ArrayScan assays. Eur J Cell Biol 2009;88(12):779–85.

40. Coppock D.L., Pardee A.B. Control of thymidine kinase mRNA during the cell cycle. Mol Cell Biol 1987;7(8):2925–32.

41. Gerdes J., Schwab U., Lemke H., Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 1983;31(1):13–20.

42. Gross M.K., Kainz M.S., Merrill G.F. The chicken thymidine kinase gene is transcriptionally repressed during terminal differentiation: the associated decline in TK mRNA cannot account fully for the disappearance of TK enzyme activity. Dev Biol 1987;122(2):439–51.

43. Kauffman M.G., Kelly T.J. Cell cycle regulation of thymidine kinase: residues near the carboxyl terminus are essential for the specific degradation of the enzyme at mitosis. Mol Cell Biol 1991;11(5):2538– 46.

44. Sutterluety H., Bartl S., Karlseder J. et al. Carboxy-terminal residues of mouse thymidine kinase are essential for rapid degradation in quiescent cells. J Mol Biol 1996;259(3):383–92.

45. Hu C.M., Chang Z.F. Mitotic control of dTTP pool: a necessity or coincidence? J Biomed Sci 2007;14(4):491–7.

46. Ke P.Y., Kuo Y.Y., Hu C.M., Chang Z.F. Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev 2005;19(16):1920–33.

47. Dobrovolsky V.N., Bucci T., Heflich R.H. et al. Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease. Mol Genet Metab 2003;78(1):1–10.

48. Ke P.Y., Chang Z.F. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/ cyclosome-CDH1-mediated pathway. Mol Cell Biol 2004;24(2):514–26.

49. Zhou J., He E., Skog S. The proliferation marker thymidine kinase 1 in clinical use. Mol Clin Oncol 2013;1(1):18–28.

50. Kuroiwa N., Nakayama M., Fukuda T. et al. Specific recognition of cytosolic thymidine kinase in the human lung tumor by monoclonal antibodies raised against recombinant human thymidine kinase. J Immunol Methods 2001;253(1–2):1–11.

51. Mao Y., Wu J., Wang N. et al. A comparative study: immunohistochemical detection of cytosolic thymidine kinase and proliferating cell nuclear antigen in breast cancer. Cancer Invest 2002;20(7–8): 922–31.

52. He Q., Mao Y., Wu J. et al. Cytosolic thymidine kinase is a specific histopathologic tumour marker for breast carcinomas. Int J Oncol 2004;25(4):945–53.

53. Guan H., Sun Y., Zan Q. et al. Thymidine kinase 1 expression in atypical ductal hyperplasia significantly differs from usual ductal hyperplasia and ductal carcinoma in situ: A useful tool in tumor therapy management. Mol Med Rep 2009;2(6):923–9. DOI: 10.3892/mmr_00000193.

54. Chen G., He C., Li L. et al. Nuclear TK1 expression is an independent prognostic factor for survival in pre-malignant and malignant lesions of the cervix. BMC Cancer 2013;13:249. DOI: 10.1186/1471-2407-13-249.

55. Liu C., Gao Q., Shi Q.L. et al. Significance of TK1 and Ki-67 expression in ovarian serous adenocarcinoma. J Clin Exp Pathol 2011;27:1289–93.

56. Mao Y., Wu J., Skog S. et al. Expression of cell proliferating genes in patients with non- small cell lung cancer by immunohistochemistry and cDNA profiling. Oncol Rep 2005;13(5): 837–46.

57. Xu Y., Liu B., Shi Q.L. et al. Thymidine kinase 1 is a better prognostic marker than Ki-67 for pT1 adenocarcinoma of the lung. Int J Clin Exp Med 2014;7(8):2120–8.

58. Xu Y., Shi Q.L., Ma H. et al. High thymidine kinase 1 (TK1) expression is a predictor of poor survival in patients with pT1 of lung adenocarcinoma. Tumour Biol 2012;33(2):475–83. DOI: 10.1007/s13277-011-0276-0.

59. Wu J., Mao Y., He L. et al. A new cell proliferating marker: cytosolic thymidine kinase as compared to proliferating cell nuclear antigen in patients with colorectal carcinoma. Anticancer Res 2000;20(6C):4815–20.

60. Wei J.W., Xu C.R., Zen D.Z., Chen Y. Analysis on the content of TK1 of patients with colonic polyps. Lab Med Clin 2011;8:769.

61. Gakis G., Hennenlotter J., Scharpf M. et al. XPA210: a new proliferation marker to characterize tumor biology and progression of renal cell carcinoma. World J Urol 2011;29(6):801–6. DOI: 10.1007/s00345-010-0621-8.

62. Kruck S., Hennenlotter J., Vogel U. et al. Exposed proliferation antigen 210 (XPA- 210) in renal cell carcinoma (RCC) and oncocytoma: clinical utility and biological implications. BJU Int 2012;109(4):634–8. DOI: 10.1111/j.1464-410X.2011.10392.x.

63. Luo P., Wang N., He E. et al. The proliferation marker thymidine kinase 1 level is high in normal kidney tubule cells compared to other normal and malignant renal cells. Pathol Oncol Res 2010;16(2):277–83. DOI: 10.1007/s12253-009-9222-5.

64. Rausch S., Hennenlotter J., Teepe K. et al. Muscle-invasive bladder cancer is characterized by overexpression of thymidine kinase 1. Urol Oncol 2015;33(10):426.e21–9. DOI: 10.1016/j.urolonc.2015.06.007.

65. Ye F.P., Xie Q.L., Liu X.L. et al. Expression of TK1 and Ki67 in prostate diseases. J Clin Exp Pathol 2008;24:644–67.

66. Aufderklamm S., Hennenlotter J., Todenhoefer T. et al. XPA-210: a new proliferation marker determines locally advanced prostate cancer and is a predictor of biochemical recurrence. World J Urol 2012;30(4):547–52. DOI: 10.1007/s00345-011-0768-y.


Review

For citations:


Sergeeva N.S., Parilova N.K., Marshutina N.V., Meysner I.S. The thymidine kinase-1 as a potential tumor marker: structure, function, activity in normal and malignant tissues. Advances in Molecular Oncology. 2017;4(1):17-23. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-1-17-23

Views: 3121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)