Preview

Успехи молекулярной онкологии

Расширенный поиск

Мутации изоцитратдегидрогеназ 1 и 2 и ме тилирование гена MGMT в глиомах

https://doi.org/10.17650/2313-805X-2017-4-1-53-59

Полный текст:

Аннотация

Глиомы – наиболее распространенные опухоли головного мозга, трудно поддающиеся ранней диагностике и лечению. Мутации в генах изоцитратдегидрогеназ 1 и 2 (IDH1 и IDH2) играют существенную роль в глиомогенезе, диагностике и выборе терапии пациентов. Было исследовано распределение мутаций IDH1 / 2 в глиомах различных гистологических типов и степеней злокачественности методом анализа кривых плавления ДНК с зондами TaqMan по разработанному нами протоколу, позволяющему определять мутации с чувствительностью 5 %. Специфичность определения мутаций подтверждена секвенированием по Сэнгеру. В глиомах II и III степеней злокачественности по классификации Всемирной организации здравоохранения частота мутаций IDH1 / 2 составила 74 %, в глиобластомах (IV степень злокачественности) – 14 %. Глиомы, содержащие клетки с олигодендроцитарным типом дифференцировки, достоверно чаще имели мутации IDH1 / 2, чем другие типы глиом (р = 0,014). Преобладающим типом мутаций являются мутации IDH1 (79 % от общего числа мутаций). Одно из последствий мутаций IDH1 / 2 – индукция аберрантного метилирования генов. Анализ метилирования промотора гена О6‑метилгуанин-ДНК-метил-трансферазы (MGMT, O6‑methylguanine-DNA-methyltransferase), предсказательного маркера чувствительности глиом к терапии алкилирующими агентами у тех же больных, показал частичную ассоциацию с мутациями IDH1 / 2. В 73 % случаев с мутациями IDH1 / 2 наблюдалось метилирование MGMT. В то же время в 67 % случаев с метилированием MGMT отсутствовали мутации IDH1 / 2, что указывает на существование других механизмов метилирования MGMT в глиомах. Данные свидетельствуют в пользу необходимости одновременного определения 2 биомаркеров при выборе послеоперационной терапии пациентов.

Об авторах

Д. В. Табаков
НИИ клинической онкологии ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


А. Н. Катаргин
НИИ канцерогенеза ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия

Россия, 115478 Москва, Каширское шоссе, 24



А. М. Строганова
НИИ клинической онкологии ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


А. И. Сендерович
НИИ клинической онкологии ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


Д. Р. Насхлеташвили
НИИ клинической онкологии ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


Н. П. Киселева
НИИ канцерогенеза ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 24


Список литературы

1. Louis D.N., Ohgaki H., Wiestler O.D. et al. The 2007 WHO classifcation of tumours of the central nervous system. Acta Neuropathol 2007;114(2): 97–109.

2. Vigneswaran K., Neill S., Hadjipanayis C.G. Beyond the world health organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med 2015;3(7):95.

3. Борисов К.Е., Сакаева Д.Д. Генные нарушения и молекулярно-генетические подтипы злокачественных глиом. Архив патологии 2013;(3):52–61. [Borisov K.E., Sakaeva D.D. Gene disorders and molecular genetic subtypes of malignant gliomas. Arkhiv patologii = Pathology Archive 2013;(3):52–61. (In Russ.)].

4. Parsons D.W., Jones S., Zhang X. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321(5897):1807–12.

5. Yan H., Ye D., Guan K.L., Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012;18(20):5562–71.

6. Losman J.A., Looper R., Koivunen P. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013;339(6127):1621–5.

7. Xu W., Yang H., Liu Y. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alphaketoglutarate- dependent dioxygenases. Cancer Cell 2011;19(1):17–30.

8. Turcan S., Rohle D., Goenka A. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012;483(7390):479–83.

9. Lu C., Ward P.S., Kapoor G.S. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012;483(7390):474–8.

10. Duncan C.G., Barwick B.G., Jin G. et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 2012;22(12):2339–55.

11. Noushmehr H., Weisenberger D.J., Diefes K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17(5):510–22.

12. Shi J., Sun B., Shi W. et al. Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 2015;36(2):655–62.

13. Molenaar R.J., Botman D., Smits M.A. et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res 2015;75(22): 4790–802.

14. Li S., Chou A.P., Chen W. Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation. Neuro Oncol 2013;15(1):57–68.

15. Okita Y., Narita Y., Miyakita Y. et al. IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy. Int J Oncol 2012;41(4):1325–36.

16. Tran A.N., Lai A., Li S. et al. Increased sensitivity to radiochemotherapy in IDH1 mutant glioblastoma as demonstrated by serial quantitative MR volumetry. Neuro Oncol 2014;16(3):414–20.

17. Weller M., Stupp R., Reifenberger G. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 2010;6(1):39–51.

18. Christmann M., Verbeek B., Roos W.P. et al. O6-methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta 2011;1816:179–90.

19. Mukasa A., Takayanagi S., Saito K. et al. Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer Sci 2012;103(3):587–92.

20. Siegal T. Clinical impact of molecular biomarkers in gliomas. J Clin Neurosci 2015;22(3):437–44.

21. Lyon E., Wittwer C.T. Light cycler technology in molecular diagnostics. J Mol Diagn 2009;11(2):93–101.

22. Табаков Д.В., Строганова А.М., Сендерович А.И. и др. Анализ метилирования гена MGMT в глиомах методом модифицированной метил-специфичной ПЦР. Вестник РОНЦ им. Н.Н. Блохина 2015;(26):9–33. [Tabakov D.V., Stroganova A.M., Senderovich A.I. et al. Analysis of MGMT gene methylation in gliomas using modified methylationspecific PCR. Vestnik RONTS im. N.N. Blokhina = Journal of N.N. Blokhin Russian Cancer Research Center 2015;(26):9–33. (In Russ.)].

23. Botezatu I.V., Nechaeva I.O., Stroganova А.М. et al. Optimization of melting analysis with TaqMan probes for detection of KRAS, NRAS, and BRAF mutations. Anal Biochem 2015;491:75–83.

24. Berenstein R., Blau I.W., Kar A. et al. Comparative examination of various PCRbased methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res 2015;33:44.

25. Ichimura K., Pearson D.M., Kocialkowski S. et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 2009;11(4):341–7.

26. Измайлов Т.Р., Снигирева Г.П., Шишкина Л.В. и др. Генетические нарушения при первичных глиобластомах головного мозга. Вопросы онкологии 2016;62(4):471–8. [Izmaylov T.R., Snigireva G.P., Shishkina L.V. et al. Genetic disorders in primary brain glioblastomas. Voprosy onkologii = Problems in Oncology 2016;62(4):471–8. (In Russ.)].

27. Arita H., Narit Y., Matsushita Y. et al. Development of a robust and sensitive pyrosequencing assay for the detection of IDH1/2 mutations in gliomas. Brain Tumor Pathol 2015;32(1):22–30.

28. Hartmann C., Hentschel B., Simon M. et al. Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res 2013;19(18):5146–57.

29. Molenaar R.J., Verbaan D., Lamba S. et al. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 2014;16(9):1263–73.

30. Yang P., Zhang W., Wang Y. IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget 2015;6(38): 40896–906.


Для цитирования:


Табаков Д.В., Катаргин А.Н., Строганова А.М., Сендерович А.И., Насхлеташвили Д.Р., Киселева Н.П. Мутации изоцитратдегидрогеназ 1 и 2 и ме тилирование гена MGMT в глиомах. Успехи молекулярной онкологии. 2017;4(1):53-59. https://doi.org/10.17650/2313-805X-2017-4-1-53-59

For citation:


Tabakov D.V., Katargin A.N., Stroganova A.M., Senderovich A.I., Naskhletashvili D.R., Kiseljova N.P. Isocitrate dehydrogenase 1 and 2 genes mutations and MGMT methylation in gliomas. Advances in molecular oncology. 2017;4(1):53-59. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-1-53-59

Просмотров: 1861


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)