Preview

Advances in Molecular Oncology

Advanced search

Effect of acadesine on breast cancer cells under hypoxia

https://doi.org/10.17650/2313-805X-2017-4-1-60-64

Abstract

The riboside derivative acadesine (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) is currently being tested in clinical trials as a promising anti-tumor drug. Intracellular target of acadesine is adenosine monophosphate-activated protein kinase (АМРК), an important regulatory molecule of energy metabolism. It is expected that acadesine would be active in tumors under hypoxia conditions. In normoxia (cells incubated in 21 % oxygen), acadesine inhibited proliferation and induced cell death of breast adenocarcinoma, including the triple negative breast cancer line. When oxygen partial pressure was decreased to 1 % (experimental hypoxia), acadesine inhibited activation of reporter construct responsive to HIF-1α (hypoxia inducible factor 1 alpha) transcription factor. This effect was observed for acadesine in concentrations close to cytotoxic. Acadesine retained cytotoxicity under hypoxia and decreased the survival of the MDA-MB-231 cell line when used in combination with cisplatin. These results considerably widen acadesine’s field of application and allow to assume its efficacy in chemotherapy combination regimens for breast cancer, including the tumors with low oxygenation.

About the Authors

A. M. Shcherbakov
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


N. E. Vavilov
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


O. E. Andreeva
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


B. V. Tyaglov
State Research Institute of Genetics and Selection of Industrial Microorganisms
Russian Federation
1 1st Dorozhnyy Proezd, Moscow 117545, Russia


A. S. Mironov
State Research Institute of Genetics and Selection of Industrial Microorganisms
Russian Federation
1 1st Dorozhnyy Proezd, Moscow 117545, Russia


R. S. Shakulov
State Research Institute of Genetics and Selection of Industrial Microorganisms
Russian Federation
1 1st Dorozhnyy Proezd, Moscow 117545, Russia


K. V. Lobanov
State Research Institute of Genetics and Selection of Industrial Microorganisms
Russian Federation
1 1st Dorozhnyy Proezd, Moscow 117545, Russia


S. V. Yarotskiy
State Research Institute of Genetics and Selection of Industrial Microorganisms
Russian Federation
1 1st Dorozhnyy Proezd, Moscow 117545, Russia


A. A. Shtil’
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


References

1. Fitzmaurice C., Dicker D., Pain A. et al. The Global Burden of Cancer 2013. JAMA Oncol 2015;1(4): 505–27.

2. Liu H.Y., Li Q.R., Cheng X.F. et al. NAMPT inhibition synergizes with NQO1-targeting agents in inducing apoptotic cell death in non-small cell lung cancer cells. Chin J Nat Med 2016;14(8):582–9.

3. Szlosarek P.W., Steele J.P., Nolan L. et al. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol 2016;3(1):58–66.

4. Miraki-Moud F., Ghazaly E., Ariza-McNaughton L. et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015;125(26):4060–8.

5. Khan A., Andrews D., Blackburn A.C. Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy. World J Clin Cases 2016;4(10):336–43.

6. Glazunova V.A., Lobanov K.V., Shakulov R.S. et al. Acadesine triggers non-apoptotic death in tumor cells. Acta Naturae 2013;5(3):74–8.

7. Theodoropoulou S., Kolovou P.E., Morizane Y. et al. Retinoblastoma cells are inhibited by aminoimidazole carboxamide ribonucleotide (AICAR) partially through activation of AMPdependent kinase. FASEB J 2010;24(8):2620–30.

8. Garcia-Gil M., Pesi R., Perna S. et al. 5’-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience 2003;117(4):811–20.

9. Kefas B.A., Heimberg H., Vaulont S. et al. AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia 2003;46(2):250–4.

10. Meisse D., van de Casteele M., Beauloye C. et al. Sustained activation of AMPactivated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett 2002;526(1–3):38–42.

11. Woodard J., Platanias L.C. AMPactivated kinase (AMPK)-generated signals in malignant melanoma cell growth and survival. Biochem Biophys Res Commun 2010;398(1):135–9.

12. Campas C., Lopez J.M., Santidrian A.F. et al. Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T lymphocytes. Blood 2003;101(9):3674–80.

13. El-Masry O.S., Brown B.L., Dobson P.R. Effects of activation of AMPK on human breast cancer cell lines with different genetic backgrounds. Oncol Lett 2012;3(1):224–8.

14. Theodoropoulou S., Brodowska K., Kayama M. et al. Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis. PLoS One 2013;8(1):e52852.

15. Song X., Huang D., Liu Y. et al. AMPactivated protein kinase is required for cell survival and growth in HeLa-S3 cells in vivo. IUBMB Life 2014;66(6):415–23.

16. Nieminen A.I., Eskelinen V.M., Haikala H.M. et al. Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc Natl Acad Sci U S A 2013;110(20):E1839–48.

17. Wang Z., Wang N., Liu P. et al. AMPK and Cancer. EXS 2016;107:203–26.

18. Sun Y., Tao C., Huang X. et al. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/ FOXA1 pathway. Onco Targets Ther 2016;9:2845–53.

19. Neise D., Graupner V., Gillissen B.F. et al. Activation of the mitochondrial death pathway is commonly mediated by a preferential engagement of Bak. Oncogene 2008;27(10):1387–96.

20. Dai H., Ding H., Meng X.W. et al. Constitutive Bak activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells. Genes Dev 2015;29(20):2140–52.

21. Lee M., Hwang J.T., Lee H.J. et al. AMPactivated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem 2003;278(41):39653–61.

22. Liao D., Johnson R.S. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 2007;26(2):281–90.

23. Faubert B., Boily G., Izreig S. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013;17(1):113–24.

24. Iselt M., Holtei W., Hilgard P. The tetrazolium dye assay for rapid in vitro assessment of cytotoxicity. Arzneimittelforschung 1989;39(7): 747–9.

25. Rapisarda A., Uranchimeg B., Sordet O. et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res 2004;64(4):1475–82.

26. Lobanov K.V., Errais Lopes L., Korol’kova N.V. et al. Reconstruction of purine metabolism in bacillus subtilis to obtain the strain producer of AICAR: a new drug with a wide range of therapeutic applications. Acta Naturae 2011;3(2):79–89.

27. Ke Q., Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70(5):1469–80.

28. Kimbro K.S., Simons J.W. Hypoxiainducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 2006;13(3):739–49.

29. Schneider B.P., Miller K.D. Angiogenesis of breast cancer. J Clin Oncol 2005;23(8):1782– 90.

30. Dimova I., Popivanov G., Djonov V. Angiogenesis in cancer – general pathways and their therapeutic implications. J BUON 2014;19(1):15–21.

31. Mittal K., Ebos J., Rini B. Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin Оncol 2014;41(2): 235–51.

32. Subhani S., Vavilala D.T., Mukherji M. HIF inhibitors for ischemic retinopathies and cancers: options beyond anti-VEGF therapies. Angiogenesis 2016;19(3): 257–73.


Review

For citations:


Shcherbakov A.M., Vavilov N.E., Andreeva O.E., Tyaglov B.V., Mironov A.S., Shakulov R.S., Lobanov K.V., Yarotskiy S.V., Shtil’ A.A. Effect of acadesine on breast cancer cells under hypoxia. Advances in Molecular Oncology. 2017;4(1):60-64. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-1-60-64

Views: 2325


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)