Рак как следствие генетического мозаицизма
https://doi.org/10.17650/2313-805X-2017-4-2-26-35
Аннотация
Ключевые слова
Об авторе
А. В. ЛихтенштейнРоссия
115478 Москва, Каширское шоссе, 24
Список литературы
1. Fernandez L.C., Torres M., Real F.X. Somatic mosaicism: on the road to cancer. Nat Rev Cancer 2016;16(1):43–55.
2. Forsberg L.A., Gisselsson D., Dumanski J.P. Mosaicism in health and disease – clones picking up speed. Nat Rev Genet 2017;18(2):128–42.
3. Collins R.L., Brand H., Redin C.E. et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol 2017;18(1):1–21.
4. McCulloch S. D., Kunkel T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008;18(1):148–61.
5. Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A 2010;107(3):961–8.
6. Lynch M. Evolution of the mutation rate. Trends Genet 2010;26(8):345–52.
7. Ju Y.S., Martincorena I., Gerstung M. et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 2017;543(7647):714–8.
8. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 2016;14(8):e1002533.
9. Bianconi E., Piovesan A., Facchin F. et al. An estimation of the number of cells in the human body. Ann Hum Biol 2013;40(6):463–71.
10. Frank S.A., Nowak M.A. Cell biology: developmental predisposition to cancer. Nature 2003;422(6931):494.
11. Tomasetti C., Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015;347(6217):78–81.
12. Kurnosov A.A., Ustyugova S.V., Nazarov V.I. et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One 2015;10(2):e0117854.
13. Coufal N.G., Garcia-Perez J.L., Peng G.E. et al. L1 retrotransposition in human neural progenitor cells. Nature 2009;460(7259):1127–31.
14. Gonitel R., Moffitt H., Sathasivam K. et al. DNA instability in postmitotic neurons. Proc Natl Acad Sci USA 2008;105(9):3467–72.
15. Lieber M.R., Gu J., Lu H. et al. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem 2010;50:279–96.
16. Hastings P.J., Lupski J.R., Rosenberg S.M., Ira G. Mechanisms of change in gene copy number. Nat Rev Genet 2009;10(8):551–64.
17. Leslie R., O’Donnell C.J., Johnson A.D. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 2014;30(12):185–94.
18. Nowak M.A. Five rules for the evolution of cooperation. Science 2006;314(5805):1560–3.
19. Bissell M.J., Hines W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011;17(3):320–9.
20. Greaves M. Does everyone develop covert cancer? Nat Rev Cancer 2014;14(4): 209–10.
21. Folkman J., Kalluri R. Cancer without disease. Nature 2004;427(6977):787.
22. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;133:571–3.
23. Gupta G.P., Massague J. Cancer metastasis: building a framework. Cell 2006;127(4):679–95.
24. Armitage P., Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 1954;8:1–12.
25. Nowell P.C. The clonal evolution of tumor cell populations. Science 1976; 194(4260):23–8.
26. Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21(3):309–22.
27. DeClerck Y. A., Pienta K.J., Woodhouse E.C. et al. The tumor microenvironment at a turning point knowledge gained over the last decade, and challenges and opportunities ahead: a white paper from the NCI TME Network. Cancer Res 2017;77(5):1051–9.
28. Sonnenschein C., Soto A.M., Rangarajan A. et al. Competing views on cancer. J Biosci 2014;39(2):281–302.
29. Sonnenschein C., Soto A.M. The aging of the 2000 and 2011 Hallmarks of Cancer reviews: a critique. J Biosci 2013;38(3):651–63.
30. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 1975;72(9):3585–9.
31. Shachaf C.M., Kopelman A.M., Arvanitis C. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004;431(7012):1112–7.
32. Hendrix M.J., Seftor E.A., Seftor R.E. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 2007;7(4):246–55.
33. Telerman A., Amson R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 2009;9(3):206–16.
34. Maffini M.V., Soto A.M., Calabro J.M. et al. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 2004;117(Pt 8):1495–502.
35. Albini A., Sporn M.B. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007;7(2):139–47.
36. Bhowmick N.A., Chytil A., Plieth D. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004;303(5659):848–51.
37. Olumi A.F., Grossfeld G.D., Hayward S.W. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999;59(19):5002–11.
38. Hayward S.W., Wang Y., Cao M. et al. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 2001;61(22):8135–42.
39. Witz I.P. Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Research 2008;68(1):9–13.
40. Rak J. Extracellular vesicles – biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 2013;4:21.
41. Zhang L., Zhang S., Yao J. et al. Microenvironment-induced PTEN loss by exosomal
42. microRNA primes brain metastasis outgrowth. Nature 2015;527(7576): 100–4.
43. Bindra R.S., Glazer P.M. Genetic instability and the tumor microenvironment: towards the concept of microenvironmentinduced mutagenesis. Mutat Res 2005;569(1–2):75–85.
44. Ishiguro K., Yoshida T., Yagishita H. et al. Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 2006;55(5):695–702.
45. Kim B.G., Li C., Qiao W. et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006;441(7096):1015–9.
46. Weber F., Shen L., Fukino K. et al. Totalgenome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet 2006;78(6):961–72.
47. Parrinello S., Coppe J.P., Krtolica A., Campisi J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 2005;118(Pt 3):485–96.
48. Coppe J.P., Patil C.K., Rodier F. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008;6(12):2853–68.
49. Abyzov A., Mariani J., Palejev D. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 2012;492(7429):438–42.
50. Cai X., Evrony G.D., Lehmann H.S. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 2014;8(5):1280–9.
51. Lodato M.A., Woodworth M.B., Lee S. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 2015;350(6256):94–8.
52. Taylor T.H., Gitlin S.A., Patrick J.L. et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 2014;20(4):571–81.
53. Sims D., Sudbery I., Ilott N.E. et al. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014;15(2):121–32.
54. Moreno E., Rhiner C. Darwin’s multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol 2014;31:16–22.
55. Burrell R.A., McGranahan N., Bartek J. et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013;501(7467):338–45.
56. Ghajar C.M., Peinado H., Mori H. et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 2013;15(7):807–17.
57. Martincorena I., Roshan A., Gerstung M. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015;348(6237):880–6.
58. Goriely A., Hansen R.M., Taylor I.B. et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 2009;41(11):1247–52.
59. Hao D., Wang L., Di L.J. Distinct mutation accumulation rates among tissues determine the variation in cancer risk. Sci Rep 2016;6:19458.
60. Шабад Л.М. Некоторые общие сопоставления и закономерности развития предраковых изменений. В кн.: Предрак в экспериментально-морфологическом аспекте. М.: Медицина, 1967. C. 352–373. [Shabad L.M. Some common comparisons and patterns of development of precancerous changes. In book: Predak in the experimental-morphological aspect. Moscow: Meditsina, 1967. Pp. 352–373. (In Russ.)].
61. Fisher R., Pusztai L., Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 2013;108(3):479–85.
62. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Research 2012;72(19):4875–82.
63. Gerlinger M., Rowan A.J., Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366(10):883–92.
64. Gould S.J., Eldredge N. Punctuated equilibrium comes of age. Nature 1993;366(6452):223–7.
65. Eldredge N., Gould S.J. On punctuated equilibria. Science 1997;276(5311):338–41.
66. Stepanenko A.A., Kavsan V.M. Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. Biopolymer Cell 2012;28:267–80.
67. Sato F., Saji S., Toi M. Genomic tumor evolution of breast cancer. Breast Cancer 2016;23(1):4–11.
68. Baca S.C., Prandi D., Lawrence M.S. et al. Punctuated evolution of prostate cancer genomes. Cell 2013;153(3):666–77.
69. Kim T.M., Xi R., Luquette L.J. et al. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res 2013;23(2):217–27.
70. Kloosterman W.P., Koster J., Molenaar J.J. Prevalence and clinical implications of chromothripsis in cancer genomes. Curr Opin Oncol 2014;26(1):64–72.
71. Cross W.C., Graham T.A., Wright N.A. New paradigms in clonal evolution: punctuated equilibrium in cancer. J Pathol 2016;240(2):126–36.
72. Graham T.A., Sottoriva A. Measuring cancer evolution from the genome. J Pathol 2017;241(2):183–91.
73. Martincorena I., Campbell P.J. Somatic mutation in cancer and normal cells. Science 2015;349(6255):1483–9.
74. Bunting S.F., Nussenzweig A. End-joining, translocations and cancer. Nat Rev Cancer 2013;13(7):443–54.
75. Forment J.V., Kaidi A., Jackson S.P. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 2012;12(10):663–70.
76. Stephens P.J., Greenman C.D., Fu B. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011;144(1):27–40.
77. Shen M.M. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell 2013;23(5):567–9.
78. Swanton C., McGranahan N., Starrett G.J. et al. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 2015;5(7):704–12.
79. Sottoriva A., Kang H., Ma Z. et al. A Big Bang model of human colorectal tumor growth. Nat Genet 2015;47(3):209–16.
80. Robertson-Tessi M., Anderson A.R. Big Bang and context-driven collapse. Nat Genet 2015;47(3):196–7.
81. Zilber L.A. On the interaction between tumor viruses and cells: a virogenetic concept of tumorigenesis. J Natl Cancer Inst 1961;26:1311–9.
82. Shabad L.M. Studies in the USSR on the distribution, circulation, and fate of carcinogenic hydrocarbons in the human environment and the role of their deposition in tissues in carcinogenesis: a review. Cancer Res 1967;27(6):1132–7.
83. Thilly W.G. Have environmental mutagens caused oncomutations in people? Nat Genet 2003;34(3):255–9.
84. Lichtenstein A.V. Cancer: bad luck or punishment? Biochemistry(Moscow) 2017;82(1):75–80.
85. Tomasetti C., Vogelstein B. Musings on the theory that variation in cancer risk among tissues can be explained by the number of divisions of normal stem cells. arXiv:1501.05035 2015.
86. Tomasetti C., Li L., Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017;355(6331):1330–4.
87. Tomasetti C., Vogelstein B. Cancer risk: role of environment-response. Science 2015;347(6223):729–31.
88. Ashford N.A., Bauman P., Brown H.S. et al. Cancer risk: role of environment. Science 2015;347(6223):727.
89. Albini A., Cavuto S., Apolone G., Noonan D.M. Strategies to prevent “bad luck” in cancer. J Natl Cancer Inst 2015;107(10):1–7.
90. Song M., Giovannucci E.L. Cancer risk: many factors contribute. Science 2015;347(6223):728–9.
91. Tarabichi M., Detours V. Comment on “Variation in cancer risk among tissues can be explained by the number of stem cell divisions”. bioRxiv 2015. DOI: http://dx.doi.org/10.1101/024497.
92. Potter J.D., Prentice R.L. Cancer risk: tumors excluded. Science 2015;347(6223):727.
93. Gotay C., Dummer T., Spinelli J. Cancer risk: prevention is crucial. Science 2015;347(6223):728.
94. Couzin-Frankel J. Biomedicine. The bad luck of cancer. Science 2015;347(6217):12.
95. Rozhok A.I., Wahl G.M., DeGregori J. A critical examination of the “bad luck” explanation of cancer risk. Cancer Prev Res(Phila) 2015;8:762–4.
96. Ledford H. Cancer studies clash over mechanisms of malignancy. Nature 2015;528(7582):317.
97. Couzin-Frankel J. Science communication. Backlash greets “bad luck” cancer study and coverage. Science 2015;347(6219):224.
98. O’Callaghan M. Cancer risk: accuracy of literature. Science 2015;347(6223):729.
99. Wu S., Powers S., Zhu W. et al. Substantial contribution of extrinsic risk factors to cancer development. Nature 2016;529(7584):43–7.
100. Alderton G.K. Cancer risk: debating the odds. Nat Rev Cancer 2016;16(2):68.
101. Blokzijl F., de Ligt J., Jager M. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016;538(7624):260–4.
102. Zhu L., Finkelstein D., Gao C. et al. Multi-organ mapping of cancer risk. Cell 2016;166(5):1132–46.
103. Alekseenko I.V., Kuzmich A.I., Pleshkan V.V. et al. The cause of cancer mutations: improvable bad life or inevitable stochastic replication errors? Mol Biol (Mosk) 2016;50(6):906–21.
104. Nowak M.A., Waclaw B. Genes, environment, and “bad luck”. Science 2017;355(6331):1266–7.
105. Manskikh V.N. Do external or internal factors lead to tumor development? It is still unknown. Biochemistry (Mosc) 2017;82(1):81–5.
106. Lichtenstein A.V. Response to comments by V.N. Manskikh: “Do external or internal factors lead to tumor development? It is still unknown”. Biochemistry (Mosc) 2017;82(1):86–7.
107. Manskikh V.N. Remark to response of A.V. Lichtenstein. Biochemistry (Mosc) 2017;82(1):88–9.
108. Zhao A.H. Stem cells, environment, and cancer risk. Stem Cell Investig 2015;2:24.
109. Campisi J. Aging and cancer: the doubleedged sword of replicative senescence. J Am Geriatr Soc 1997;45(4):482–8.
110. Campisi J. Cancer and ageing: rival demons? Nat Rev Cancer 2003;3(5): 339–49.
111. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005;120(4):513–22.
112. Siegel R., Ma J., Zou Z., Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64(1):9–29.
113. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017;67(1):7–30.
114. Bray F., Jemal A., Grey N. et al. Global cancer transitions according to the Human Development Index(2008–2030): a population-based study. Lancet Oncol 2012;13(8):790–801.
115. Nones K., Waddell N., Wayte N. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 2014;5:5224.
116. Notta F., Chan-Seng-Yue M., Lemire M. et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 2016;538(7625):378–82.
117. Davoli T., Uno H., Wooten E.C., Elledge S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017;355(6322):1–16.
118. Zanetti M. Chromosomal chaos silences immune surveillance. Science 2017;355(6322):249–50.
119. Zhao X., Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res 2017;77(4):817–22.
Рецензия
Для цитирования:
Лихтенштейн А.В. Рак как следствие генетического мозаицизма. Успехи молекулярной онкологии. 2017;4(2):26-35. https://doi.org/10.17650/2313-805X-2017-4-2-26-35
For citation:
Likhtensteyn A.V. Cancer as a result of genetic mosaicism. Advances in Molecular Oncology. 2017;4(2):26-35. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-2-26-35