Метаболические аспекты адоптивной иммунотерапии опухолей
- Авторы: Казанский Д.Б.1, Силаева Ю.Ю.1, Калинина А.А.1, Замкова М.А.1, Хромых Л.М.1, Персиянцева Н.А.1, Джолохава Л.Х.1
-
Учреждения:
- НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
- Выпуск: Том 4, № 3 (2017)
- Страницы: 21-26
- Раздел: ОБЗОРНЫЕ СТАТЬИ
- Статья опубликована: 16.10.2017
- URL: https://umo.abvpress.ru/jour/article/view/98
- DOI: https://doi.org/10.17650/2313-805X-2017-4-3-21-26
- ID: 98
Цитировать
Полный текст
Аннотация
Об авторах
Д. Б. Казанский
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Автор, ответственный за переписку.
Email: kazansky1@yandex.ru
115478 Москва, Каширское шоссе, 24. Россия
Ю. Ю. Силаева
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Email: fake@neicon.ru
115478 Москва, Каширское шоссе, 24. Россия
А. А. Калинина
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Email: fake@neicon.ru
115478 Москва, Каширское шоссе, 24. Россия
М. А. Замкова
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Email: fake@neicon.ru
115478 Москва, Каширское шоссе, 24. Россия
Л. М. Хромых
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Email: fake@neicon.ru
115478 Москва, Каширское шоссе, 24. Россия
Н. А. Персиянцева
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Email: fake@neicon.ru
115478 Москва, Каширское шоссе, 24. Россия
Л. Х. Джолохава
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Email: fake@neicon.ru
115478 Москва, Каширское шоссе, 24. Россия
Список литературы
- Mehlen P., Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006;6(6):449–58.
- Cardoso F., Di L.A., Lohrisch C. et al. Second and subsequent lines of chemotherapy for metastatic breast cancer: what did we learn in the last two decades? Ann Oncol 2002;13(2):197–207.
- Spaans J.N., Goss G.D. Drug resistance to molecular targeted therapy and its consequences for treatment decisions in nonsmall-cell lung cancer. Front Oncol 2014;4:190.
- Rosenberg S.A., Restifo N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015;348(6230):62–8.
- Robbins P.F. Morgan R.A., Feldman S.A. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29(7):917–24.
- Sharma P., Allison J.P. The future of immune checkpoint therapy. Science 2015;348(6230):56–61.
- Kazansky D.B. Intrathymic selection: new insight into tumor immunology. Adv Exp Med Biol 2007;601:133–44.
- Казанский Д.Б. Т-лимфоциты в развитии хронического лимфолейкоза. Клиническая онкогематология 2012;5(2): 85–95. [Kazanskiy D.B. T-lymphocytes in the development of chronic lymphocytic leukemia. Klinicheskaya onkogematologiya = Clinical Oncohematology 2012;5(2):85–95. (In Russ.)].
- Казанский Д.Б., Силаева Ю.Ю., Калинина А.А. и др. Трансплантационный и специфический противоопухолевый иммунитет в ретроспективе: новые модели, основанные на трансгенезе цепей Т-клеточного рецептора. Успехи молекулярной онкологии 2016;3(1):14–27. [Kazanskiy D.B., Silaeva Yu.Yu., Kalini - na A.A. Transplantational and specific antitumor immunity in retrospective view: new models based on transgenesis of individual chains of T-cell receptor. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2016;3(1):14–27. (In Russ.)].
- Kochenderfer J.N., Dudley M.E., Feldman S.A. et al. B-cell depletion and remissions of malignancy along with cytokineassociated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor- transduced T-cells. Blood 2012;119(12): 2709–20.
- Grupp S.A., Kalos M., Barrett D. et al. Chimeric antigen receptor-modified Tcells for acute lymphoid leukemia. N Engl J Med 2013;368(16):1509–18.
- Rosenberg S.A., Yang J.C., Sherry R.M. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011;17(13):4550–7.
- Tran E., Robbins P.F., Lu Y.C. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 2016;375(23):2255–62.
- Chang C.H., Pearce E.L. Emerging concepts of T-cell metabolism as a target of immunotherapy. Nat Immunol 2016;17(4):364–8.
- Gattinoni L., Lugli E., Ji Y. et al. A human memory T-cell subset with stem cell-like properties. Nat Med 2011;17(10):1290–7.
- Pearce E.L., Walsh M.C., Cejas P.J. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009;460(7251):103–7.
- Michalek R.D., Gerriets V.A., Jacobs S.R. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T-cell subsets. J Immunol 2011;186(6):3299–303.
- Sukumar M., Gattinoni L. The short and sweet of T-cell therapy: restraining glycolysis enhances the formation of immunological memory and antitumor immune responses. Oncoimmunology 2016;3(1):e27573.
- Rosenberg S.A., Restifo N.P., Yang J.C. et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008;8(4):299–308.
- Klebanoff C.A., Gattinoni L., TorabiParizi P. et al. Central memory self/tumorreactive CD8+ T-cells confer superior antitumor immunity compared with effector memory T-cells. Proc Natl Acad Sci U S A 2005;102(27):9571–76.
- Gattinoni L., Zhong X.S., Palmer D.C. et al. Wnt signaling arrests effector T-cell differentiation and generates CD8+ memory stem cells. Nat Med 2009;15(7): 808–13.
- Muranski P., Boni A., Antony P.A. et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008;112(2):362–73.
- Sukumar M., Liu J., Mehta G.U. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab 2016;23(1):63–76.
- Luckey C.J. Bhattacharya D., Goldrath A.W. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A 2006;103(9):3304–9.
- Vannini N., Girotra M., Naveiras O. et al. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat Commun 2016;7:13125.
- Bertolo A., Capossela S., Fränkl G. et al. Oxidative status predicts quality in human mesenchymal stem cells. Stem Cell Res Ther 2017;8(1):3.
- Tothova Z., Kollipara R., Huntly B.J. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007;128(2):325–39.
- Ito K., Hirao A., Arai F. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004;431(7011):997–1002.
- Sena L.A., Li S., Jairaman A. et al. Mitochondria are required for antigen-specific T-cell activation through reactive oxygen species signaling. Immunity 2013;38(2):225–36.
- Weinberg S.E., Sena L.A., Chandel N.S. et al. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015;42(3):406–17.
- Pollizzi K.N., Sun I.H., Patel C.H. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T-cell differentiation. Nat Immunol 2016;17(6):704–11.
- Verbist K.C., Guy C.S., Milasta S. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 2016;532(7599):389–93.
- Scholz G., Jandus C., Zhang L. et al. Modulation of mTOR signalling triggers the formation of stem cell-like memory T-cells. EBioMedicine 2016;4:50–61.
- Yang K., Neale G., Green D.R. et al. The tumor suppressor Tsc1 enforces quiescence of naive T-cells to promote immune homeostasis and function. Nat Immunol 2011;12(9):888–97.
- Araki K., Turner A.P., Shaffer V.O. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 2009;460(7251):108–12.
- Pollizzi K.N., Patel C.H., Sun I.H. et al. mTORC1 and mTORC2 selectively regulate CD8+ T-cell differentiation. J Clin Invest 2015;125(5):2090–108.
- Shrestha S., Yang K., Wei J. et al. Tsc1 promotes the differentiation of memory CD8+ T-cells via orchestrating the transcriptional and metabolic programs. Proc Natl Acad Sci U S A 2014;111(41): 14858–63.
- Rao R.R., Li Q., Odunsi K., Shrikant P.A. The mTOR kinase determines effector versus memory CD8+ T-cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010;32(1):67–78.
- O’Neill L.A., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016;16(9):553–65.
- Macintyre A.N., Gerriets V.A., Nichols A.G. et al. The glucose transporter Glut1 is selectively essential for CD4 T-cell activation and effector function. Cell Metab 2014;20(1):61–72.
- Gerriets V.A., Kishton R.J., Nichols A.G. et al. Metabolic programming and PDHK1 control CD4+ T-cell subsets and inflammation. J Clin Invest 2015;125(1):194–207.
- Wang R., Dillon C.P., Shi L.Z. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011;35(6):871–82.
- van der Windt G.J., Everts B., Chang C.H. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T-cell memory development. Immunity 2012;36(1):68–78.
- Sukumar M., Liu J., Ji Y. et al. Inhibiting glycolytic metabolism enhances CD8+ T-cell memory and antitumor function. J Clin Invest 2013;123(10):4479–88.
- Patsoukis N., Bardhan K., Chatterjee P. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 2015;6:6692.
- Peng M., Yin N., Chhangawala S. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 2016;354(6311):481–4.
- Chang C.H., Curtis J.D., Maggi L.B. Jr et al. Posttranscriptional control of T-cell effector function by aerobic glycolysis. Cell 2013;153(6):1239–51.
- Crompton J.G., Sukumar M., Roychoudhuri R. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 2015;75(2):296–305.
- Yang W., Bai Y., Xiong Y. et al. Potentiating the antitumour response of CD8+ T-cells by modulating cholesterol metabolism. Nature 2016;531(7596):651–5.
- Kawalekar O.U., O’Connor R.S., Fraietta J.A. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T-cells. Immunity 2016;44(2):380–90.
- Buck M.D., O’Sullivan D., Klein Geltink R.I. et al. Mitochondrial dynamics controls T-cell fate through metabolic programming. Cell 2016;166(1):63–76.
- Geiger R., Rieckmann J.C., Wolf T. et al. L-arginine modulates T-cell metabolism and enhances survival and anti-tumor activity. Cell 2016;167(3):829–42.
- Ho P.C., Bihuniak J.D., Macintyre A.N. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T-cell responses. Cell 2015;162(6):1217–28.
- Doedens A.L., Phan A.T., Stradner M.H. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T-cells to persistent antigen. Nat Immunol 2013;14(11):1173–82.
- Clever D., Roychoudhuri R., Constantinides M.G. et al. Oxygen sensing by T-cells establishes an immunologically tolerant metastatic niche. Cell 2016;166(5):1117–31.
- Eil R., Vodnala S.K., Clever D. et al. Ionic immune suppression within the tumour microenvironment limits T-cell effector function. Nature 2016;537(7621):539–43.
- Bengsch B., Johnson A.L., Kurachi M. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T-cell exhaustion. Immunity 2016;45(2):358–73.
- Scharping N.E., Menk A.V., Moreci R.S. et al. The tumor microenvironment represses T-cell mitochondrial biogenesis to drive intratumoral T-cell metabolic insufficiency and dysfunction. Immunity 2016;45(2):374–88.
- Phan A.T., Doedens A.L., Palazon A. et al. Constitutive glycolytic metabolism supports CD8+ T-cell effector memory differentiation during viral infection. Immunity 2016;45(5):1024–7.
- Piret J.P., Mottet D., Raes M., Michiels C. Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 2002;64(5–6):889–92.
- Makino Y., Nakamura H., Ikeda E. et al. Hypoxia-inducible factor regulates survival of antigen receptor-driven T-cells. J Immunol 2003;171(12): 6534–40.
- Kerkar S.P., Restifo N.P. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 2012;72(13):3125–30.
- Zhao E., Maj T., Kryczek I. et al. Cancer mediates effector T-cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 2016;17(1):95–103.
- Cui W., Liu Y., Weinstein J.S. et al. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T-cells. Immunity 2011;35(5):792–805.
- Sukumar M., Kishton R.J., Restifo N.P. Metabolic reprograming of anti-tumor immunity. Curr Opin Immunol 2017;46:14–22.
Дополнительные файлы


