MicroRNA-155-5p in pathogenesis of cancer
https://doi.org/10.17650/2313-805X-2017-4-3-27-36
Abstract
Keywords
About the Authors
I. B. ZborovskayaRussian Federation
24 Kashirskoe Shosse, Moscow 115478.
A. V. Komel’kov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478.
References
1. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215–33.
2. Iorio M.V., Croce C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2017;9(6):852.
3. Moss T.J., Luo Z., Seviour E.G. et al. Genome-wide perturbations by miRNAs map onto functional cellular pathways, identifying regulators of chromatin modifiers. NPJ Syst Biol Appl 2015;1:15001.
4. Mendell J.T., Olson E.N. MicroRNAs in stress signaling and human disease. Cell 2012;148(6):1172–87.
5. Yu X., Harris S.L., Levine A.J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 2006;66(9):4795–801.
6. Takahashi R.U., Prieto-Vila M., Hirona- ka A., Ochiya T. The role of extracellular vesicle microRNAs in cancer biology. Clin Chem Lab Med 2017;55(5):648–56.
7. Чевкина Е., Щербаков А., Журавская А. и др. Экзосомы и передача (эпи)генетической информации опухолевыми клетками. Успехи молекулярной онкологии 2016;2(3):8–20. [Tchevkina E.M., Shcherbakov A.M., Zhuravskaya A.Yu. et al. Exosomes and transfer of (epi)genetic information by tumor cells. Uspekhi molekulyarnoy оnkologii = Advances in Molecular Oncology 2016;2(3):8–20. (In Russ.)].
8. Tili E., Michaille J.J., Croce C.M. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013;253(1):167–84.
9. Ranganath P. MicroRNA-155 and its role in malignant hematopoiesis. Biomark Insights 2015;10:95–102.
10. Mashima R. Physiological roles of miR-155. Immunology 2015;145(3):323–33.
11. Elton T.S., Selemon H., Elton S.M., Parinandi N.L. Regulation of the MIR155 host gene in physiological and pathological processes. Gene 2013;532(1):1–12.
12. Paladini L., Fabris L., Bottai G. et al. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res 2016;35:103.
13. Higgs G., Slack F. The multiple roles of microRNA-155 in oncogenesis. J Clin Bioinforma 2013;3(1):17.
14. Santos J.C., Brianti M.T., Almeida V.R. et al. Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. Mol Carcinog 2017;56(4):1372–9.
15. Sandhu S.K., Volinia S., Costinean S. et al. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eµ-miR-155 transgenic mouse model. Proc Natl Acad Sci U S A 2012;109(49):20047–52.
16. Coira I.F., Rufino-Palomares E.E., Romero O.A. et al. Expression inactivation of SMARCA4 by microRNAs in lung tumors. Hum Mol Genet 2015;24(5):1400–9.
17. Thompson R.C., Herscovitch M., Zhao I. et al. NF-kappaB down-regulates expression of the B-lymphoma marker CD10 through a miR-155/PU.1 pathway. J Biol Chem 2011;286(3):1675–82.
18. Liu H., Patel M.R., Prescher J.A. et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 2010;107(42):18115–20.
19. Liu M., Zhou K., Huang Y., Cao Y. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. J Exp Clin Cancer Res 2015;34:121.
20. Song H., Li Y., Chen G. et al. Human MCRS2, a cell-cycle-dependent protein, associates with LPTS/PinX1 and reduces the telomere length. Biochem Biophys Res Commun 2004;316(4):1116–23.
21. Tili E., Michaille J.J. Resveratrol, microRNAs, inflammation, and cancer. J Nucleic Acids 2011;2011:102431.
22. Vigorito E., Kohlhaas S., Lu D., Leyland R. miR-155: an ancient regulator of the im mune system. Immunol Rev 2013;253(1):146–57.
23. Ji W., Zhang X., Sun X. et al. miRNA-155 modulates the malignant biological characteristics of NK/T-cell lymphoma cells by targeting FOXO3a gene. J Huazhong Univ Sci Technolog Med Sci 2014;34(6):882–8.
24. Burocchi A., Pittoni P., Tili E. et al. Regulated Expression of miR-155 is Required for iNKT Cell Development. Front Immunol 2015;6:140.
25. Tili E., Michaille J.J., Adair B. et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 2010;31(9):1561–6.
26. Yoshimura A., Ito M., Chikuma S. et al. Negative regulation of cytokine signaling in immunity. Cold Spring Harb Perspect Biol 2017:a028571.
27. Yang S., Li F., Jia S. et al. Early secreted antigen ESAT-6 of Mycobacterium Tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction. Cell Physiol Biochem 2015;35(4):1276–88.
28. Piccinini A.M., Midwood K.S. Endogenous control of immunity against infection: tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep 2012;2(4):914–26.
29. Midwood K.S., Chiquet M., Tucker R.P., Orend G. Tenascin-C at a glance. J Cell Sci 2016;129(23):4321–7.
30. Tili E., Chiabai M., Palmieri D. et al. Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget 2015;6(28):24599–610.
31. Latruffe N., Lançon A., Frazzi R. et al. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann N Y Acad Sci 2015;1348(1):97–106.
32. Darbelli L., Richard S. Emerging functions of the quaking RNA-binding proteins and link to human diseases. Wiley Interdiscip Rev RNA 2016;7(3):399–412.
33. Vasilescu C., Dragomir M., Tanase M. et al. Circulating miRNAs in sepsis-A network under attack: an in-silico prediction of the potential existence of miRNA sponges in sepsis. PLoS One 2017;12(8):e0183334.
34. Chen Y., Wang G., Liu Z. et al. Glucocorticoids regulate the proliferation of T cells via miRNA-155 in septic shock. Exp Ther Med 2016;12(6):3723–8.
35. Ma F., Liu F., Ding L. et al. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol 2017;55(1):1263–73.
36. Edalati Fathabad M., Karimipoor M., Alizadeh S. et al. miR-155 effectively induces apoptosis in K562 Philadelphia positive cell line through upregulation of p27kip1. Bioimpacts 2017;7(2):109–14.
37. Palma C.A., Al Sheikha D., Lim T.K. et al. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia. Mol Cancer 2014;13:79.
38. Xue H., Hua L.M., Guo M., Luo J.M. SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol Rep 2014;32(5):2253–9.
39. Rai D., Kim S.W., McKeller M.R. et al. Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci U S A 2010;107(7):3111–6.
40. Dagan L.N., Jiang X., Bhatt S. et al. miR-155 regulates HGAL expression and increases lymphoma cell motility. Blood 2012;119(2):513–20.
41. Hou Y., Wang J., Wang X. et al. Appraising microRNA-155 as a noninvasive diagnostic biomarker for cancer detection: a metaanalysis. Medicine (Baltimore) 2016;95(2):e2450.
42. Xu T.P., Zhu C.H., Zhang J. et al. MicroRNA-155 expression has prognostic value in patients with non-small cell lung cancer and digestive system carcinomas. Asian Pac J Cancer Prev 2013;14(12):7085–90.
43. Bertoli G., Cava C., Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015;5(10):1122–43.
44. Mirzaei H., Gholamin S., Shahidsales S. et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2016;53:25–32.
45. Barbano R., Palumbo O., Pasculli B. et al. A miRNA signature for defining aggressive phenotype and prognosis in gliomas. PLoS One 2014;9(10):e108950.
46. Wang F., Zhou J., Zhang Y. et al. The value of microRNA-155 as a prognostic factor for survival in non-small cell lung cancer: a meta-analysis. PLoS One 2015;10(8):e0136889.
47. Xie K., Ma H., Liang C. et al. A functional variant in miR-155 regulation region contributes to lung cancer risk and survival. Oncotarget 2015;6(40):42781–92.
48. Xue X., Liu Y., Wang Y. et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016;7(51):84508–19.
49. Slattery M.L., Lundgreen A., Kadlubar S.A. et al. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog 2013;52(2):155–66.
50. Yang M., Shen H., Qiu C. et al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer 2013;49(3):604–15.
51. van Roosbroeck K., Fanini F., Setoyama T. et al. Combining anti-mir-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res 2017;23(11):2891–904.
52. Xiang X., Zhuang X., Ju S. et al. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene 2011;30(31):3440–53.
53. Yu D., Lv M., Chen W. et al. Role of miR-155 in drug resistance of breast cancer. Tumor Biol 2015;36(3):1395–401.
54. Johansson J., Berg T., Kurzejamska E. et al. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 2013;32(50):5614–24.
55. Voortman J., Goto A., Mendiboure J. et al. MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res 2010;70(21):8288–98.
56. Yu X., Odenthal M., Fries J.W. Exosomes as miRNA Carriers: formation-function future. Int J Mol Sci 2016;17(12).
57. Munagala R., Aqil F., Gupta R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour Biol 2016;37(8):10703–14.
58. Aushev V.N., Zborovskaya I.B., Laktio- nov K.K. et al. Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One 2013;8(10):e78649.
59. Wang S., Cao X., Ding B. et al. The rs767649 polymorphism in the promoter of miR-155 contributes to the decreased risk for cervical cancer in a Chinese population. Gene 2016;595(1):109–14.
60. Ji J., Xu M., Tu J. et al. MiR-155 and its functional variant rs767649 contribute to the susceptibility and survival of hepatocellular carcinoma. Oncotarget 2016;7(37):60303–9.
61. Kong W., He L., Coppola M. et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 2010;285(23):17869–79.
62. Teoh S.L., Das S. The role of MicroRNAs in diagnosis, prognosis, metastasis and resistant cases in breast cancer. Curr Pharm Des 2017;23(12):1845–59.
63. Urbánek P., Klotz L.O. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017;174(12):1514–32.
64. Chen L., Jiang K., Jiang H., Wei P. miR-155 mediates drug resistance in osteosarcoma cells via inducing autophagy. Exp Ther Med 2014;8(2):527–32.
65. Geretto M., Pulliero A., Rosano C. et al. Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 2017;7(6):1350–71.
66. Shah M.Y., Ferrajoli A., Sood A.K. et al. microRNA therapeutics in cancer – an emerging concept. E Bio Medicine 2016;12:34–42.
Review
For citations:
Zborovskaya I.B., Komel’kov A.V. MicroRNA-155-5p in pathogenesis of cancer. Advances in Molecular Oncology. 2017;4(3):27-36. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-3-27-36