Интеграция сигнальных каскадов фосфоинозитид-3-киназы (PI3K) и трансформирующего фактора роста β1 (TGF-β1): роль в реализации терапевтической неэффективности тамоксифена
- Авторы: Бабышкина Н.Н.1,2, Узянбаев И.А.2, Дронова Т.А.1, Чердынцева Н.В.1
-
Учреждения:
- Научно-исследовательский институт онкологии ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук»
- ФГБОУ ВО «Сибирский государственный медицинский университет Минздрава России»
- Выпуск: Том 10, № 4 (2023)
- Страницы: 47-60
- Раздел: ОБЗОРНАЯ СТАТЬЯ
- Статья опубликована: 15.12.2023
- URL: https://umo.abvpress.ru/jour/article/view/609
- DOI: https://doi.org/10.17650/2313-805X-2023-10-4-47-60
- ID: 609
Цитировать
Полный текст
Аннотация
Функционирование сигнальных каскадов факторов роста, их взаимодействие с центральными регуляторными мишенями опухолевых клеток и эстрогенами рассматриваются в качестве основных механизмов, опосредующих развитие гормональной резистентности при раке молочной железы. Результатом интеграции сигнального пути трансформирующего фактора роста β1 (TGF-β1) и PI3K (фосфоинозитид-3-киназа)/Akt (протеинкиназа B)/mTOR (мишень рапамицина млекопитающих) может являться активация пролиферативных процессов в клетках молочной железы и, как следствие, неэффективный ответ на терапию и прогрессирование заболевания. В обзоре представлен систематический анализ данных литературы, посвященной роли TGF-β1-сигнального пути в механизмах резистентности к тамоксифену в аспекте взаимодействия с каскадом PI3K/Akt/mTOR. Рассмотрены особенности взаимодействия сигнального пути рецепторов эстрогенов α, механизмы регуляторной активации TGF-β1 и PI3K/Akt/mTOR, а также их вклад в реализацию ответа на тамоксифен. Непосредственное вовлечение TGF-β1/PI3K в развитие устойчивости к данному препарату определяет перспективы изучения белков-эффекторов этих каскадов в качестве молекулярных мишеней. Накопленные к настоящему времени данные позволяют рассматривать сигнальный путь TGF-β1/PI3K как потенциальный молекулярный инструмент для поиска эффективных стратегий блокирования резистентности опухолевых клеток к тамоксифену.
Об авторах
Н. Н. Бабышкина
Научно-исследовательский институт онкологии ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук»; ФГБОУ ВО «Сибирский государственный медицинский университет Минздрава России»
Автор, ответственный за переписку.
Email: nbabyshkina@mail.ru
ORCID iD: 0000-0002-0562-3878
Бабышкина Наталия Николаевна.
634009 Томск, пер. Кооперативный, 5; 634050 Томск, Московский тракт, 2
РоссияИ. А. Узянбаев
ФГБОУ ВО «Сибирский государственный медицинский университет Минздрава России»
Email: fake@neicon.ru
634050 Томск, Московский тракт, 2
РоссияТ. А. Дронова
Научно-исследовательский институт онкологии ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук»
Email: fake@neicon.ru
ORCID iD: 0000-0003-3009-2404
634009 Томск, пер. Кооперативный, 5
РоссияН. В. Чердынцева
Научно-исследовательский институт онкологии ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук»
Email: fake@neicon.ru
ORCID iD: 0000-0003-1526-9013
634009 Томск, пер. Кооперативный, 5
РоссияСписок литературы
- Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России, 2022. 252 с.
- Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020. Int J Cancer 2021;10:778–89. doi: 10.1002/ijc.33588
- Burstein H.J., Curigliano G., Thürlimann B. et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann Oncol 2021;32(10):1216–35. doi: 10.1016/j.annonc.2021.06.023
- Jordan V.C. The role of tamoxifen in the treatment and prevention of breast cancer. Curr Probl Cancer 1992;16(3):129–76. doi: 10.1016/0147-0272(92)90002-6
- Zarzynska J.M. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014;2014:141747. doi: 10.1155/2014/141747
- Silberstein G.B., Daniel C.W. Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 1987;237(4812):291–3. doi: 10.1126/science.3474783
- Knabbe C., Lippman M.E., Wakefield L.M., et al. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 1987;48(3):417–28. doi: 10.1016/0092-8674(87)90193-0
- Lamouille S., Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 2007;178(3):437–51. doi: 10.1083/jcb.200611146
- Yoo Y.A., Kim Y.H., Kim J.S. et al. The functional implications of Akt activity and TGF-beta signaling in tamoxifen-resistant breast cancer. Biochim Biophys Acta 2008;1783(3):438–47. doi: 10.1016/j.bbamcr.2007.12.001
- Nardone A., De Angelis C., Trivedi M.V., et al. The changing role of ER in endocrine resistance. Breast 2015;242(2):60–6. doi: 10.1016/j.breast.2015.07.015
- Fuentes N., Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019;116:135–70. doi: 10.1016/bs.apcsb.2019.01.00
- Dahlman-Wright K., Cavailles V., Fuqua S.A. et al. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 2006;58(4):773–81. doi: 10.1124/pr.58.4.8
- O’Lone R., Frith M.C., Karlsson E.K. et al. Genomic targets of nuclear estrogen receptors. Mol Endocrinol 2004;18(8):1859–75. doi: 10.1210/me.2003-0044
- Klinge C.M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 2000;29(14):2905–19. doi: 10.1093/nar/29.14.2905
- Filardo E.J., Quinn J.A., Bland K.I. et al. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000;14(10):1649–60. doi: 10.1210/mend.14.10.0532
- Filardo E.J., Quinn J.A., Frackelton A.R. et al. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 2002;16(1):70–84. doi: 10.1210/mend.16.1.0758
- Koszegi Z., Cheong R.Y. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front Endocrinol (Lausanne) 2022;13:999236. doi: 10.3389/fendo.2022.999236
- Prossnitz E.R., Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 2011;7(12):715–26. doi: 10.1038/nrendo.2011.122
- Ali S., Rasool M., Chaoudhry H. et al. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation 2016;12(3):135–9. doi: 10.6026/97320630012135
- Hörlein A.J., Näär A.M., Heinzel T. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995;377(6548):397–404. doi: 10.1038/377397a0
- Heldring N., Pawson T., McDonnell D. et al. Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 2007;282(14):10449–55. doi: 10.1074/jbc.M611424200
- De Amicis F., Zupo S., Panno M.L. et al. Progesterone receptor B recruits a repressor complex to a half-PRE site of the estrogen receptor alpha gene promoter. Mol Endocrinol 2009;23(4):454–65. doi: 10.1210/me.2008-0267
- Bartella V., Rizza P., Barone I. et al. Estrogen receptor beta binds Sp1 and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Res Treat 2012;134(2):569–81. doi: 10.1007/s10549-012-2090-9
- Hurtado A., Holmes K.A., Geistlinger T.R. et al. Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 2008;456(7222):663–6. doi: 10.1038/nature07483
- Syed V. TGF-β signaling in cancer. J Cell Biochem 2016;117(6):1279–87. doi: 10.1038/nature07483
- Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641. doi: 10.1146/annurev.cb.06.110190.003121
- Gentry L.E., Lioubin M.N., Purchio A.F. et al. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol 1988;8(10):4162–8. doi: 10.1128/mcb.8.10.4162–4168
- Piek E., Heldin C.H., Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999;13(15):2105–24.
- Papageorgis P. TGFβ signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol 2015;2015:587193. doi: 10.1155/2015/587193
- Lin H.Y., Wang X.F. Expression cloning of TGF-beta receptors. Mol Reprod Dev 1992;32(2):105–10. doi: 10.1002/mrd.1080320205.
- Massagué J. A very private TGF-beta receptor embrace. Mol Cell 2008;29(2):149–50. doi: 10.1016/j.molcel.2008.01.006
- Tzavlaki K., Moustakas A. TGF-β signaling. Biomolecules 2020;10(3):487. doi: 10.3390/biom10030487
- Denicourt C., Dowdy S.F. Another twist in the transforming growth factor beta-induced cell-cycle arrest chronicle. Proc Natl Acad Sci USA 2003;100(26):15290–301. doi: 10.1073/pnas.0307282100
- Babyshkina N., Malinovskaya E., Stakheyeva M. et al. Association of functional -509c>t polymorphism in the TGF-β1 gene with infiltrating ductal breast carcinoma risk in a Russian western Siberian population. Cancer Epidemiol 2011;35(6):560–63. doi: 10.1016/j.canep.2011.02.002
- Barcellos-Hoff M.H., Akhurst R.J. Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res 2009;11(1):202–7. doi: 10.1186/bcr2224
- Lee M.K., Pardoux C., Hall M.C. et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 2007;26(17):3957–67. doi: 10.1038/sj.emboj.7601818
- McKay M.M., Morrison D.K. Integrating signals from RTKs to ERK/MAPK. Oncogene 2007;26(22):3113–22. doi: 10.1038/sj.onc.1210394
- van der Geer P., Hunter T., Lindberg R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343
- Zhang Y.E. Non-Smad pathways in TGF-beta signaling. Cell Res 2009;19(1):128–39. doi: 10.1038/cr.2008.328
- Kim S., Kim S.A., Han J., et al. Rho-Kinase as a target for cancer therapy and its immunotherapeutic potential. Int J Mol Sci 2021;22(23):12916–36. doi: 10.3390/ijms222312916
- Sahai E., Marshall C.J. RHO-GTPases and cancer. Nat Rev Cancer 2002;2(2):133–42. doi: 10.1038/nrc725
- Panková K., Rösel D., Novotný M. et al. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci 2010;67(1):63–71. doi: 10.1007/s00018-009-0132-1
- Taddei M.L., Giannoni E., Morandi A. et al. Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Commun Signal 2014;12:24–35. doi: 10.1186/1478-811X-12-24
- Yamashita M., Fatyol K., Jin C. et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 2008;31(6):918–24. doi: 10.1016/j.molcel.2008.09.002
- Paplomata E., O’Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol 2014;6(4):154–66. doi: 10.1177/1758834014530023
- Backer J.M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 2008;410(1):1–17. doi: 10.1042/BJ20071427
- Vadas O., Burke J.E., Zhang X. et al. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci Signal 2011;4(195):re2. doi: 10.1126/scisignal.2002165
- Brown J.R., Auger K.R. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evol Biol 2011;11:4–17. doi: 10.1186/1471-2148-11-4
- Yu X., Long Y.C., Shen H.M. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015;11(10):1711–28. doi: 10.1080/15548627.2015.1043076
- Falasca M., Hughes W.E., Dominguez V. et al. The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 2007;282(38):28226–36. doi: 10.1074/jbc.M704357200
- Braccini L., Ciraolo E., Campa C.C. et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun 2015;6:7400–15. doi: 10.1038/ncomms8400
- Backer J.M. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 2016;473(15): 2251–71. PMID: 35295334. doi: 10.3389/fphar.2022.791272
- Hinz N., Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019;17(1):154–82. doi: 10.1186/s12964-019-0450-3
- Kim C.Y., Kim Y.C., Oh J.H. et al. HOXA5 confers tamoxifen resistance via the PI3K/AKT signaling pathway in ER-positive breast cancer. J Cancer 2021;12(15):4626–37. doi: 10.7150/jca.59740
- Hamadneh L., Bahader M., Abuarqoub R. et al. PI3K/AKT and MAPK1 molecular changes preceding matrix metallopeptidases overexpression during tamoxifen-resistance development are correlated to poor prognosis in breast cancer patients. Breast Cancer 2021;28(6):1358–66. doi: 10.1007/s12282-021-01277-2
- Tanic N., Milovanovic Z., Tanic N. et al. The impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen treatment in breast cancer patients. Cancer Biol Ther 2012;13(12):1165–74. doi: 10.4161/cbt.21346
- Hamadneh L., Abuarqoub R., Alhusban A. et al. Upregulation of PI3K/AKT/PTEN pathway is correlated with glucose and glutamine metabolic dysfunction during tamoxifen resistance development in MCF-7 cells. Sci Rep 2020;10:21933–40. doi: 10.1038/s41598-020-78833-x
- Baba A.B., Rah B., Bhat G.R. et al. Transforming growth factor-beta (TGF-β) signaling in cancer-A betrayal within. Front Pharmacol 2022;13:791272–87. doi: 10.3389/fphar.2022.791272
- Bakin A.V., Tomlinson A.K., Bhowmick N.A. et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000;275(47):36803–10. doi: 10.1074/jbc.M005912200
- Jechlinger M., Sommer A., Moriggl R. et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 2006;116(6):1561–70. doi: 10.1172/JCI24652
- Yi J.Y., Shin I., Arteaga C.L. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 2005;280(11):10870–76. doi: 10.1074/jbc.M413223200
- Viñals F., Pouysségur J. Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Сell Вiol 2001;21(21):7218–30. doi: 10.1128/MCB.21.21.7218-7230.2001
- Valderrama-Carvajal H., Cocolakis E., Lacerte A. et al. Activin/ TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 2002;4(12):963–9. doi: 10.1038/ncb885
- Conery A.R., Cao Y., Thompson E.A. et al. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 2004;6(4):366–72. doi: 10.1038/ncb1117
- Perry R.R., KangY., Greaves B.R. Relationship between tamoxifen induced transforming growth factor beta 1 expression, cytostasis and apoptosis in human breast cancer cells. Br J Cancer 1995;72(6):1441–6. doi: 10.1038/bjc.1995.527
- Fry M.J. Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 2001;3(5):304–12. doi: 10.1186/bcr312
- Jordan N.J., Gee J.M., Barrow D. et al. Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 2004;87(2):167–80. doi: 10.1023/B:BREA.0000041623.21338.47
- Дронова Т.А., Бабышкина Н.Н., Завьялова М.В. и др. Взаимосвязь компонентов EGFR/PI3K/Akt-сигнального пути с эффективностью терапии тамоксифеном у больных эстрогензависимым раком молочной железы. Успехи молекулярной онкологии 2018;5(3):40–50. DOI: 17650/2313-805X-2018-5-3-40-50
- Frogne T., Jepsen J.S., Larsen S.S. et al. Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. Endocr Relat Cancer 2005;12(3):599–614. doi: 10.1677/erc.1.00946
- Beeram M., Tan Q.T., Tekmal R.R. et al. Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol 2007;18(8):1323–8. doi: 10.1093/annonc/mdm170
- Дронова Т.А., Бабышкина Н.Н., Слонимская Е.М. и др. Рецептор трансформирующего фактора роста II типа (TGFβR2) и pAKT: связь с формированием резистентного к гормонотерапии фенотипа эстроген-позитивных опухолей молочной железы. В кн.: VII Петербургский международный онкологический форум «Белые ночи 2021». Материалы VII Петербургского международного онкологического форума. Санкт-Петербург, 2021. С. 255.
- Fan M., Yan P.S., Hartman-Frey C. et al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res 2006;66(24):11954–66. doi: 10.1158/0008-5472
- Radiation therapy and M7824 in treating patients with metastatic hormone receptor positive, HER2 negative breast cancer. Available at: https://clinicaltrials.gov/study/NCT03524170.
- Formenti S.C., Lee P., Adams S. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin Cancer Res 2018;24(11):2493–2504. doi: 10.1158/1078-0432.CCR-17-3322
- Jung S.Y., Yug J.S., Clarke J.M. et al. Population pharmacokinetics of vactosertib, a new TGF-β receptor type Ι inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020;85(1):173–83. doi: 10.1007/s00280-019-03979-z
- Baselga J., Im S.A., Iwata H. et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2017;18(7):904–16. doi: 10.1016/S1470-2045(17)30376-5
- Di Leo A., Johnston S., Lee K.S. et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2018;19(1):87–100. doi: 10.1016/S1470-2045(17)30688-5
- Krop I.E., Mayer I.A., Ganju V. et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2016;17(6):811–21. doi: 10.1016/S1470-2045(16)00106-6
- Baselga J., Dent S.F. Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. J Clin Oncol 2018:36(Suppl. 18):LBA1006. doi: 10.1200/JCO.2018.36.18_suppl.LBA1006
- Markham A. Alpelisib: first global approval. Drugs 2019;79(11):1249–53. doi: 10.1007/s40265-019-01161-6
- André F., Ciruelos E., Rubovszky G. et al. SOLAR-1 Study Group. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 2019;380(20):1929–40. doi: 10.1056/NEJMoa1813904
- Lu Y.S., Lee K.S., Chao T.Y. et al. A Phase Ib study of alpelisib or buparlisib combined with tamoxifen plus goserelin in premenopausal women with HR-positive HER2-negative advanced breast cancer. Clin Cancer Res 2021;27(2):408–17. doi: 10.1158/1078-0432.CCR-20-1008
- ClinicalTrials.gov. to evaluate the safety, tolerability, and pharmacokinetics of inavolisib single agent in participants with solid tumors and in combination with endocrine and targeted therapies in participants with breast cancer. Available at: https://clinicaltrials.gov/study/NCT03006172
- Jones R.H., Casbard A., Carucci M. et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2020;21(3):345–57. doi: 10.1016/S1470-2045(19)30817-4
- Ma C.X., Suman V., Goetz M.P. et al. A Phase II trial of neoadjuvant MK-2206, an AKT Inhibitor, with anastrozole in clinical stage II or III PIK3CA-mutant ER-positive and HER2-negative breast cancer. Clin Cancer Res 2017;23(22):6823–32. doi: 10.1158/1078-0432.CCR-17-1260
Дополнительные файлы


