The role of ABC-transporters in homeostasis, cancer pathogenesis and therapy
- Authors: Boichuk S.V.1,2,3, Ivoilova T.V.1
-
Affiliations:
- Kazan State Medical University, Ministry of Health of Russia
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology of the Kazan Federal University
- Russian Medical Academy of Continuing Professional Education
- Issue: Vol 11, No 1 (2024)
- Pages: 8-21
- Section: REVIEW
- Published: 05.04.2024
- URL: https://umo.abvpress.ru/jour/article/view/645
- DOI: https://doi.org/10.17650/2313-805X-2024-11-1-8-21
- ID: 645
Cite item
Full Text
Abstract
ABC transporters (ATP Binding Cassette (ABC) transporters) are proteins, which play a dual role in the substances transport across the membrane. On the one hand, they transport nutrients and other molecules inside the cell to supply the necessary nutrients, on the other hand, these proteins excrete some endogenous and exogenous substrates from the cell to maintain their homeostasis in the body and prevent from effects of aggressive environment. ABC transporters play a role in the pathogenesis of various metabolic disorders. In addition, a large amount of evidence has been accumulated about the participation of these proteins in oncogenesis because of their involvement into initiation, progression, invasion and metastasis of tumors, as well as development of multidrug resistance phenotype. Currently, these proteins are attractive therapeutic targets, influence on which can significantly increase the effectiveness of anticancer therapy and improve the prognosis of patients with oncological diseases, including recurrent, metastatic and inoperable forms.
The review provides information on drugs that affect the functional activity of ABC transporters and the mechanisms of their action, and also presents the results of clinical trials of these inhibitors.
About the authors
S. V. Boichuk
Kazan State Medical University, Ministry of Health of Russia; Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology of the Kazan Federal University; Russian Medical Academy of Continuing Professional Education
Author for correspondence.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084
Sergey Vasilyevich Boychuk
49 Butlerova St., Kazan 420012; 18 Kremlevskaya St., Kazan 420008; Bld. 1, 2/1 Barricadnaya St., Moscow 125993
Russian FederationT. V. Ivoilova
Kazan State Medical University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0009-0003-4348-9141
49 Butlerova St., Kazan 420012
Russian FederationReferences
- Housman G., Byler S., Heerboth S. et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6(3):1769–92. doi: 10.3390/cancers6031769
- Rueff J., Rodrigues A.S. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol 2016;1395:1–18. doi: 10.1007/978-1-4939-3347-1_1
- Stavrovskaya A.A., Guens G.P. News in the studies of multidrug resistance of breast cancer cells. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2015;2(1):39–51. (In Russ.). doi: 10.17650/2313-805X.2015.2.1.039–051
- Deng J., Bai X., Feng X. et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 2019;19(1):618. doi: 10.1186/s12885-019-5824-9
- Stefan S.M. Multi-target ABC transporter modulators: what next and where to go? Future Med Chem 2019;11(18):2353–8. doi: 10.4155/fmc-2019-0185
- Juan-Carlos P.M., Perla-Lidia P.P., Stephanie-Talia M.M. et al. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep 2021;48(2):1883–901. doi: 10.1007/s11033-021-06155-w
- Robey R.W., Pluchino K.M., Hall M.D. et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18(7):452–64. doi: 10.1038/s41568-018-0005-8
- Smirnov L.P. ATP-binding transport proteins of the abc family (ATP-binding cassette transporters, abc). Nomenclature, structure, molecular diversity, function, participation in the functioning of the xenobiotic biotransformation system. Trudy Karel’skogo nauchnogo centra RAN = Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences 2020;3:5–19. (In Russ.). doi: 10.17076/eb1044
- Alam A., Locher K.P. Structure and mechanism of human ABC transporters. Annu Rev Biophys 2023;52:275–300. doi: 10.1146/annurev-biophys-111622-091232
- Thomas C., Tampé R. Structural and mechanistic principles of ABC transporters. Annu Rev Biochem 2020;89:605–36. doi: 10.1146/annurev-biochem-011520-105201
- Rees D.C., Johnson E., Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol 2009;10(3):218–27. doi: 10.1038/nrm2646
- Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep 2015;7:14. doi: 10.12703/P7-14
- Fitzgerald M.L., Mujawar Z., Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis 2010;211(2):361–70. doi: 10.1016/j.atherosclerosis.2010.01.011
- Yvan-Charvet L., Wang N., Tall A.R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2010;30(2):139–43. doi: 10.1161/ATVBAHA.108.179283
- Davis W. Jr. The ATP-binding cassette transporter-2 (ABCA2) overexpression modulates sphingosine levels and transcription of the amyloid precursor protein (APP) Gene. Curr Alzheimer Res 2015;12(9):847–59. doi: 10.2174/156720501209151019105834
- Michaki V., Guix F.X., Vennekens K. et al. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-β production by altering Nicastrin maturation and intracellular localization. J Biol Chem 2012;287(2):1100–11. doi: 10.1074/jbc.M111.288258
- Hovnanian A. Harlequin ichthyosis unmasked: a defect of lipid transport. J Clin Invest 2005;115(7):1708–10. doi: 10.1172/JCI25736
- Thomas A.C., Cullup T., Norgett E.E. et al. ABCA12 is the major harlequin ichthyosis gene. J Invest Dermatol 2006;126(11):2408–13. doi: 10.1038/sj.jid.5700455
- de Vree J.M., Jacquemin E., Sturm E. et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA 1998;95(1):282–7. doi: 10.1073/pnas.95.1.282
- Zhang Y., Li F., Patterson A.D. et al. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice. J Biol Chem 2012;287(29):24784–94. doi: 10.1074/jbc.M111.329318
- Zhang C., Li D., Zhang J. et al. Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Invest Dermatol 2013;133(9):2221–8. doi: 10.1038/jid.2013.145
- Helias V., Saison C., Ballif B.A. et al. ABCB6 is dispensable for eryth- ropoiesis and specifies the new blood group system Langereis. Nat Genet 2012;44(2):170–3. doi: 10.1038/ng.1069
- Bekri S., Kispal G., Lange H. et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 2000;96(9):3256–64.
- Maguire A., Hellier K., Hammans S. et al. X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br J Haematol 2001;115(4):910–7. doi: 10.1046/j.1365-2141.2001.03015.x
- Leslie E.M., Deeley R.G., Cole S.P. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005;204(3):216–37. doi: 10.1016/j.taap.2004.10.012
- Bienengraeber M., Olson T.M., Selivanov V.A. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 2004;36(4):382–7. doi: 10.1038/ng1329
- Singareddy S.S., Roessler H.I., McClenaghan C. et al. ATP-sensitive potassium channels in zebrafish cardiac and vascular smooth muscle. J Physiol 2022;600(2):299–312. doi: 10.1113/JP282157.
- van Bon B.W., Gilissen C., Grange D.K. et al. Cantú syndrome is caused by mutations in ABCC9. Am J Hum Genet 2012;90(6):1094–101. doi: 10.1016/j.ajhg.2012.04.014
- Engelen M., Kemp S., de Visser M. et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 2012;7:51. doi: 10.1186/1750-1172-7-51
- Kemp S., Wanders R.J. X-linked adrenoleukodystrophy: very longchain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol Genet Metab 2007;90(3):268–76. doi: 10.1016/j.ymgme.2006.10.001
- Ferdinandusse S., Jimenez-Sanchez G., Koster J. et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 2015;24(2):361–70. doi: 10.1093/hmg/ddu448
- Coelho D., Kim J.C., Miousse I.R. et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet 2012;44(10):1152–5. doi: 10.1038/ng.2386
- Deme J.C., Hancock M.A., Xia X. et al. Purification and interaction analyses of two human lysosomal vitamin B12 transporters: LMBD1 and ABCD4. Mol Membr Biol 2014;31(7–8):250–61. doi: 10.3109/09687688.2014.990998
- Lu K., Lee M.H., Hazard S. et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 2001;69(2):278–90. doi: 10.1086/321294
- Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R. et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012;27(2):187–96. doi: 10.1093/mutage/ger075
- Mohelnikova-Duchonova B., Brynychova V., Oliverius M. et al. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas 2013;42(4):707–16. doi: 10.1097/MPA.0b013e318279b861
- Moore J.M., Bell E.L., Hughes R.O. et al. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023;29(2):152–72. doi: 10.1016/j.molmed.2022.11.001
- Zhao X., Guo Y., Yue W. et al. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. Onco Targets Ther 2014;7:343–51. doi: 10.2147/OTT.S56029
- Zheng S., Liu D., Wang F. et al. ABCA12 promotes proliferation and migration and inhibits apoptosis of pancreatic cancer cells through the AKT signaling pathway. Front Genet 2022;13:906326. doi: 10.3389/fgene.2022.906326
- Demidenko R., Razanauskas D., Daniunaite K. et al. Frequent down-regulation of ABC transporter genes in prostate cancer. BMC Cancer. 2015;15:683. doi: 10.1186/s12885-015-1689-8
- Andersen V., Svenningsen K., Knudsen L.A. et al. Novel understanding of ABC transporters ABCB1/ MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J Gastroenterol 2015;21(41):11862–76. doi: 10.3748/wjg.v21.i41.11862
- Begicevic R.R., Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017;18(11):2362. doi: 10.3390/ijms18112362
- Bradley G., Sharma R., Rajalakshmi S. et al. P-glycoprotein expression during tumor progression in the rat liver. Cancer Res 1992;52(19):5154–61.
- Skinner K.T., Palkar A.M., Hong A.L. Genetics of ABCB1 in Cancer. Cancers (Basel). 2023;15(17):4236. doi: 10.3390/cancers15174236.
- Abe T., Mori T., Wakabayashi Y. et al. Expression of multidrug resistance protein gene in patients with glioma after chemotherapy. J Neurooncol 1998;40(1):11–8. doi: 10.1023/a:1005954406809
- Kunická T., Souček P. Importance of ABCC1 for cancer therapy and prognosis. Drug Metab Rev 2014;46(3):325–42. doi: 10.3109/03602532.2014.901348
- Andersen V., Vogel L.K., Kopp T.I. et al. High ABCC2 and low ABCG2 gene expression are early events in the colorectal adenomacarcinoma sequence. PLoS One 2015;10(3):e0119255. doi: 10.1371/journal.pone.0119255
- Cervenkova L., Vycital O., Bruha J. et al. Protein expression of ABCC2 and SLC22A3 associates with prognosis of pancreatic adenocarcinoma. Sci Rep 2019;9(1):19782. doi: 10.1038/s41598-019-56059-w
- Chen Y., Zhou H., Yang S. et al. Increased ABCC2 expression predicts cisplatin resistance in non-small cell lung cancer. Cell Biochem Funct 2021;39(2):277–86. doi: 10.1002/cbf.3577
- Li J., Zhang J.T., Jiang X. et al. The cystic fibrosis transmembrane conductance regulator as a biomarker in non-small cell lung cancer. Int J Oncol 2015;46(5):2107–15. doi: 10.3892/ijo.2015.2921
- Wu Z., Peng X., Li J. et al. Constitutive activation of nuclear factor κB contributes to cystic fibrosis transmembrane conductance regulator expression and promotes human cervical cancer progression and poor prognosis. Int J Gynecol Cancer 2013;23(5):906–15. doi: 10.1097/IGC.0b013e318292da82
- Xu J., Yong M., Li J. et al. High level of CFTR expression is associated with tumor aggression and knockdown of CFTR suppresses proliferation of ovarian cancer in vitro and in vivo. Oncol Rep 2015;33(5):2227–34. doi: 10.3892/or.2015.3829
- Zhang J.T., Jiang X.H., Xie C. et al. Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochim Biophys Acta 2013;1833(12):2961–9. doi: 10.1016/j.bbamcr.2013.07.021
- Theodoulou F.L., Kerr I.D. ABC transporter research: going strong 40 years on. Biochem Soc Trans 2015;43(5):1033–40. doi: 10.1042/BST20150139
- Linton K.J. Structure and function of ABC transporters. Physiology (Bethesda) 2007;22:122–30. doi: 10.1152/physiol.00046.2006
- Litvyakov N.V., Tsyganov M.M. Clinical studies of the contribution of ABC transporters to the realization of the phenotype of multidrug resistance of breast cancer. Voprosy onkologii = Issues of Oncology 2016;62(1):45–52. (In Russ.).
- Badiee S.A., Isu U.H., Khodadadi E. et al. The alternating access mechanism in mammalian multidrug resistance transporters and their bacterial homologs. Membranes 2023;13(6):568. doi: 10.3390/membranes13060568
- Shaikh S., Wen P.C., Enkavi G. et al. Capturing functional motions of membrane channels and transporters with molecular dynamics simulation. J Comput Theor Nanosci 2010;7(12):2481–500. doi: 10.1166/jctn.2010.1636
- George A.M., Jones P.M. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog Biophys Mol Biol 2012;109(3):95–107. doi: 10.1016/j.pbiomolbio.2012.06.003
- Higgins C.F., Linton K.J. The ATP switch model for ABC transporters. Nat Struct Mol Biol 2004;11(10):918–26. doi: 10.1038/nsmb836
- Jones P.M., George A.M. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 2013;48(1):39–50. doi: 10.3109/10409238.2012.735644
- Mochida Y., Taguchi K., Taniguchi S. et al. The role of P-glycoprotein in intestinal tumorigenesis: disruption of mdr1a suppresses polyp formation in Apc(Min/+) mice. Carcinogenesis 2003;24(7):1219–24. doi: 10.1093/carcin/bgg073
- Henderson M.J., Haber M., Porro A. et al. ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst 2011;103(16):1236–51. doi: 10.1093/jnci/djr256
- Yamada A., Ishikawa T., Ota I. et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res Treat 2013;137(3):773–82. doi: 10.1007/s10549-012-2398-5
- Omran O.M. The prognostic value of breast cancer resistance protein (BCRB/ABCG2) expression in breast carcinomas. J Environ Pathol Toxicol Oncol 2012;31(4):367–76. doi: 10.1615/jenvironpatholtoxicoloncol.2013006767
- Xiang L., Su P., Xia S. et al. ABCG2 is associated with HER-2 expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma. Diagn Pathol 2011;6:90. doi: 10.1186/1746-1596-6-90
- Liu T., Li Z., Zhang Q. et al. Targeting ABCB1 (MDR1) in multidrug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget 2016;7(50):83502–13. doi: 10.18632/oncotarget.13148
- Serra M., Pasello M., Manara M.C. et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 2006;29(6):1459–68.
- Nobili S., Lapucci A., Landini I. et al. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020;60:72–95. doi: 10.1016/j.semcancer.2019.08.006
- Jiang Z.S., Sun Y.Z., Wang S.M. et al. Epithelial-mesenchymal transition: potential regulator of ABC transporters in tumor progression. J Cancer 2017;8(12):2319–27. doi: 10.7150/jca.19079
- Stewart T.A., Azimi I., Thompson E.W. et al. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition. Biochem Biophys Res Commun 2015;458(3):509–14. doi: 10.1016/j.bbrc.2015.01.141
- Tian Y., Tian X., Han X. et al. Expression of ATP binding cassette E1 enhances viability and invasiveness of lung adenocarcinoma cells in vitro. Mol Med Rep 2016;14(2):1345–50. doi: 10.3892/mmr.2016.5388
- Tsyganov M.M., Tsydenova I.A., Markovich V.A. et al. Expression heterogeneity of ABC-transporter family genes and chemosensitivity genes in gastric tumor, carcinomatosis and lymph node metastases. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2022;9(4):78–88. (In Russ.). doi: 10.17650/2313-805X-2022-9-4-78-88
- Tsyganov M.M., Ibragimova M.K., Pevzner A.M. et al. Gene expression analysis of ABC transporter family in breast tumors: relationship with chemotherapy effect and disease prognosis. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2020;7(2):29–38. (In Russ.). doi: 10.17650/2313-805X-2020-7-2-29-38
- Durmus S., Hendrikx J.J., Schinkel A.H. Apical ABC transporters and cancer chemotherapeutic drug disposition. Adv Cancer Res 2015;125:1–41. doi: 10.1016/bs.acr.2014.10.001
- Leonard G.D., Fojo T., Bates S.E. The role of ABC transporters in clinical practice. Oncologist 2003;8(5):411–24. doi: 10.1634/theoncologist.8-5-411
- Mo W., Zhang J.T. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 2012;3(1):1–27.
- Xiao H., Zheng Y., Ma L. et al. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 2021;12:648407. doi: 10.3389/fphar.2021.648407
- Lhommé C., Joly F., Walker J.L. et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol 2008;26(16):2674–82. doi: 10.1200/JCO.2007.14.9807
- Adamska A., Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018;24(29):3222–38. doi: 10.3748/wjg.v24.i29.3222
- Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a Pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. doi: 10.3390/biomedicines10030601
- Tamaki A., Ierano C., Szakacs G. et al. The controversial role of ABC transporters in clinical oncology. Essays Biochem 2011;50(1):209–32. doi: 10.1042/bse0500209
- Cripe L.D., Uno H., Paietta E.M. et al. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood 2010;116(20):4077–85. doi: 10.1182/blood-2010-04-277269
- Xu T., Guo P., He Y. et al. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020;34(10): 2438–58. doi: 10.1002/ptr.6694
- Gonçalves B.M.F., Cardoso D.S.P., Ferreira U.M.J. Overcoming multidrug resistance: flavonoid and terpenoid nitrogen-containing derivatives as ABC transporter modulators. Molecules 2020;25(15):3364. doi: 10.3390/molecules25153364
- Kelly R.J., Draper D., Chen C.C. et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin Cancer Res 2011;17(3):569–80. doi: 10.1158/1078-0432.CCR-10-1725
- Palmeira A., Sousa E., Vasconcelos M.H. et al. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 2012;19(13):1946–2025. doi: 10.2174/092986712800167392
- Dury L., Nasr R., Lorendeau D. et al. Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1. Biochem Pharmacol 2017;124:10–8. doi: 10.1016/j.bcp.2016.10.013
- Ni K., Yang L., Wan C. et al. Flavonostilbenes from Sophora alopecuroides L. as multidrug resistance associated protein 1 (MRP1) inhibitors. Nat Prod Res 2014;28(23):2195–8. doi: 10.1080/14786419.2014.930856
- Chen J.R., Jia X.H., Wang H. et al. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int J Oncol 2016;48(5):2063–70. doi: 10.3892/ijo.2016.3423
- Ji L., Liu X., Zhang S. et al. The Novel triazolonaphthalimide derivative LSS-11 synergizes the anti-proliferative effect of paclitaxel via STAT3-dependent MDR1 and MRP1 downregulation in chemo- resistant lung cancer cells. Molecules 2017;22(11):1822. doi: 10.3390/molecules22111822
- Antoni F., Bause M., Scholler M. et al. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). Eur J Med Chem 2020;191:112133. doi: 10.1016/j.ejmech.2020.112133
- Weidner L.D., Zoghbi S.S., Lu S. et al. The inhibitor Ko143 is not specific for ABCG2. J Pharmacol Exp Ther 2015;354(3):384–93. doi: 10.1124/jpet.115.225482
- Tsuruo T., Iida H., Tsukagoshi S. et al. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981;41(5):1967–72.
- Wang L., Sun Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch Biochem Biophys 2020;696:108675. doi: 10.1016/j.abb.2020.108675
- Borska S., Chmielewska M., Wysocka T. et al. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem Toxicol 2012;50(9):3375–83. doi: 10.1016/j.fct.2012.06.035
- Chen Y.Y., Chang Y.M., Wang K.Y. et al. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ Toxicol 2019;34(3):233–9. doi: 10.1002/tox.22677
- Eid S.Y., El-Readi M.Z., Wink M. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. Phytomedicine 2012;19(14):1288–97. doi: 10.1016/j.phymed.2012.08.010
- Jain S., Laphookhieo S., Shi Z. et al. Reversal of P-glycoproteinmediated multidrug resistance by sipholane triterpenoids. J Nat Prod 2007;70(6):928–31. doi: 10.1021/np0605889
- Pires M.M., Emmert D., Hrycyna C.A. et al. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol Pharmacol 2009;75(1):92–100. doi: 10.1124/mol.108.050492
- Zhang Y., Guo L., Huang J. et al. Inhibitory effect of berberine on broiler P-glycoprotein expression and function: in situ and in vitro studies. Int J Mol Sci 2019;20(8):1966. doi: 10.3390/ijms20081966
- Choi Y.H., Yu A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 2014;20(5):793–807. doi: 10.2174/138161282005140214165212
- Beretta G.L., Cassinelli G., Pennati M. et al. Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017;142:271–89. doi: 10.1016/j.ejmech.2017.07.062
- Kathawala R.J., Gupta P., Ashby C.R. Jr. et al. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2015;18:1–17. doi: 10.1016/j.drup.2014.11.002
- Callaghan R., Higgins C.F. Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer 1995;71(2):294–9. doi: 10.1038/bjc.1995.59
- Liu Z.H., Ma Y.L., He Y.P. et al. Tamoxifen reverses the multi-drugresistance of an established human cholangiocarcinoma cell line in combined chemotherapeutics. Mol Biol Rep 2011;38(3):1769–75. doi: 10.1007/s11033-010-0291-z
- Bogush T.A., Dudko E.A., Bogush E.A. et al. Molecular targets of tamoxifen other than estrogen receptors. Antibiotiki i himioterapiya = Antibiotics and Chemotherapies 2012;57(1–2):50–8. (In Russ.).
- Bakadlag R., Limniatis G., Georges G. et al. The anti-estrogen receptor drug, tamoxifen, is selectively lethal to P-glycoprotein expressing multidrug resistant tumor cells. BMC Cancer 2023;23(1):24. doi: 10.1186/s12885-022-10474-x
- Shen L.Z., Hua Y.B., Yu X.M. et al. Tamoxifen can reverse multidrug resistance of colorectal carcinoma in vivo. World J Gastroenterol 2005;11(7):1060–4. doi: 10.3748/wjg.v11.i7.1060
- Wen S., Fu X., Li G. et al. Efficacy of tamoxifen in combination with docetaxel in patients with advanced non-small-cell lung cancer pretreated with platinum-based chemotherapy. Anticancer Drugs 2016;27(5):447–56. doi: 10.1097/CAD.0000000000000350
Supplementary files


