Механизмы цитотоксической активности пиррол-карбоксамидов в отношении опухолевых клеточных сублиний с множественной лекарственной устойчивостью
- Авторы: Галембикова А.Р.1, Дунаев П.Д.1, Бикиниева Ф.Ф.1, Мустафин И.Г.1, Копнин П.Б.2, Зыкова С.С.3, Мухутдинова Ф.И.1, Сарбазян Е.А.4, Бойчук С.В.1,5,6,7
-
Учреждения:
- ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
- Научно-исследовательский институт канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
- ФГБОУ ВО «Пермская государственная фармацевтическая академия» Минздрава России
- ФГБОУ ВО «Казанский национальный исследовательский технологический университет»
- Научно-исследовательская лаборатория «Биомаркер», Институт фундаментальной медицины и биологии ФГАОУ ВО «Казанский (Приволжский) федеральный университет»
- ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
- Центральная научно-исследовательская лаборатория ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
- Выпуск: Том 10, № 3 (2023)
- Страницы: 59-71
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- Статья опубликована: 09.10.2023
- URL: https://umo.abvpress.ru/jour/article/view/571
- DOI: https://doi.org/10.17650/2313-805X-2023-10-3-59-71
- ID: 571
Цитировать
Полный текст
Аннотация
Введение. Вещества, именуемые митотическими ядами и влияющие на динамическое состояние микротрубочек веретена деления, являются хорошо известными и эффективными химиотерапевтическими препаратами. эти вещества связываются с микротрубочками, влияя тем самым на процессы полимеризации или деполимеризации тубулина, что в конечном счете приводит к остановке клеточного цикла в M-фазе (митотическая катастрофа) и последующей гибели клеток по механизму апоптоза. В предыдущих исследованиях мы показали высокую цитотоксическую и противоопухолевую активность пиррол-карбоксамидов (пк) (пк-61 и пк-84) в отношении широкого спектра опухолевых клеточных линий эпителиального происхождения, включая трижды негативный рак молочной железы, рак легких и предстательной железы.
Цель исследования – изучить цитотоксическую активность пк-61 и пк-84 в отношении опухолевых клеточных линий с множественной лекарственной устойчивостью.
Материалы и методы. Исследования проводили на клеточных линиях трижды негативного рака молочной железы, резистентного к паклитакселу (HCC1806 Tx-R), и остеосаркомы, резистентной к доксорубицину (SaOS-2 Dox-R). Согласно ранее проведенным исследованиям обе опухолевые клеточные сублинии имели фенотип множественной лекарственной устойчивости.
Результаты. противоопухолевая активность пк обусловлена их способностью ингибировать процессы полимеризации тубулина. Данные иммунофлуоресцентной микроскопии показали способность пк нарушать процессы сборки тубулина в опухолевых клетках. В результате ингибирования полимеризации тубулина в этих клетках происходит остановка клеточного цикла в М-фазе, что приводит к накоплению митотических клеток и индуцирует апоптоз.
Заключение. Результаты исследований показывают высокую цитотоксическую активность соединений пк-61 и пк-84 в отношении опухолевых клеточных линий с множественной лекарственной устойчивостью, что открывает перспективы для создания новых эффективных противоопухолевых средств на основе пк.
Об авторах
А. Р. Галембикова
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-0293-2974
420012 Казань, ул. Бутлерова, 49
РоссияП. Д. Дунаев
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-5449-4435
420012 Казань, ул. Бутлерова, 49
РоссияФ. Ф. Бикиниева
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-9012-6525
420012 Казань, ул. Бутлерова, 49
РоссияИ. Г. Мустафин
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0001-9683-3012
420012 Казань, ул. Бутлерова, 49
РоссияП. Б. Копнин
Научно-исследовательский институт канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-2078-4274
115522 Москва, Каширское шоссе, 24
РоссияС. С. Зыкова
ФГБОУ ВО «Пермская государственная фармацевтическая академия» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-7395-4951
614081 Пермь, ул. Полевая, 2
РоссияФ. И. Мухутдинова
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0009-0004-9666-0130
420012 Казань, ул. Бутлерова, 49
РоссияЕ. А. Сарбазян
ФГБОУ ВО «Казанский национальный исследовательский технологический университет»
Email: fake@neicon.ru
ORCID iD: 0009-0005-4068-662X
420015 Казань, ул. К. Маркса, 68
РоссияС. В. Бойчук
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России; Научно-исследовательская лаборатория «Биомаркер», Институт фундаментальной медицины и биологии ФГАОУ ВО «Казанский (Приволжский) федеральный университет»; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России; Центральная научно-исследовательская лаборатория ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Автор, ответственный за переписку.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084
420012 Казань, ул. Бутлерова, 49
420008 Казань, ул. Кремлевская, 18
125993 Москва, ул. Баррикадная, 2 / 1, стр. 1
420012 Казань, ул. Бутлерова, 49
Список литературы
- Parker A.L., Kavallaris M., McCarroll J.A. Microtubules and their role in cellular stress in cancer. Front Oncol 2014;4:1–19. doi: 10.3389/fonc.2014.00153
- Dumontet C., Jordan M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9(10): 790–803. doi: 10.1038/nrd3253
- Gigant B., Wang C., Ravelli R.B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. doi: 10.1038/nature03566
- Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathminlike domain. Nature 2004;428(6979):198–202. doi: 10.1038/nature02393
- Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. doi: 10.1038/ncomms12103
- Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. doi: 10.1016/j.jmb.2016.06.023
- Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. doi: 10.1016/j.tcb.2018.05.001
- Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015;2015:690916. doi: 10.1155/2015/690916
- Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.
- West L.M., Northcote P.T., Battershill C.N., Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. doi: 10.1021/jo991296y
- Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. doi: 10.1002/anie.201307749
- Munshi N., Jeay S., Li Y. et al. ARQ 197, a novel and selective inhibitor of the human c-met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther 2010;9(6):1544–53. doi: 10.1158/1535-7163.MCT-09-1173
- Katayama R., Aoyama A., Yamori T. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res 2013;73(10):3087–96. doi: 10.1158/0008-5472.CAN-12-3256
- Aoyama A., Katayama R., Oh-Hara T. et al. Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance. Mol Cancer Ther 2014;13(12):2978–90. doi: 10.1158/1535-7163.MCT-14-0462
- Gumireddy K., Reddy M.V.R., Cosenza S.C. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 2005;7:275–86. doi: 10.1016/j.ccr.2005.02.009
- Jost M., Chen Y., Gilbert L.A. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubuledestabilizing agent. Mol Cell 2017;68(1):210–23. doi: 10.1016/j.molcel.2017.09.012
- Park H., Hong S., Hong S. Nocodazole is a high-affinity ligand for the cancer-related kinases ABL, c-KIT, BRAF, and MEK. Chem Med Chem 2012;7(1):53–6. doi: 10.1002/cmdc.201100410
- Guo X., Zhang X., Li Y. et al. Nocodazole increases the ERK activity to enhance MKP-1 expression which inhibits p38 activation induced by TNF-α. Mol Cell Biochem 2012;364(1–2):373–80. doi: 10.1007/s11010-012-1239-5
- Tanabe K. Microtubule depolymerization by kinase inhibitors: unexpected findings of dual inhibitors. Int J Mol Sci 2017;18(12):2508. doi: 10.3390/ijms18122508
- Ramirez-Rios S., Michallet S., Peris L. et al. A new quantitative cell-based assay reveals unexpected microtubule stabilizing activity of certain kinase inhibitors, clinically approved or in the process of approval. Front Pharmacol 2020;11:543. doi: 10.3389/fphar.2020.00543
- Krishna R., Mayer L.D. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265–83. doi: 10.1016/S0928-0987(00)00114-7
- Mechetner E., Kyshtoobayeva A., Zonis S. et al. Levels of multidrug resistance (MDR1) P-glycoprotein expressing by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998;4(2):389–98.
- Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5):1282– 93. doi: 10.1172/JCI119642
- Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010;10(3):194–204. doi: 10.1038/nrc2803
- Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42.
- Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-aminopyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. doi: 10.1097/CAD.0000000000000372
- Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-aminopyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. doi: 10.1097/CAD.0000000000000753
- Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structureactivity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. doi: 10.1016/j.ejmech.2016.10.026
- Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. doi: 10.1016/j.ejmech.2018.11.004
- Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. doi: 10.3390/molecules26195780
- Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. doi: 10.3892/ol.2017.6795
- Zykova S., Kizimova I., Syutkina A. et al. Synthesis and cytostatic activity of (E)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden-4oxo-1-(2-phenylaminobenzamido)-4,5-dihydro-1Hpyrrol-3carboxylate. Pharm Chem J 2020;53:895–8. doi: 10.1007/s11094020-02096-z
- Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics 2023;13:2646. doi: 10.3390/diagnostics13162646
- Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. doi: 10.3390/biomedicines10030601
- Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.
- Pirol Ş.C., Çalışkan B., Durmaz I. et al. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3carboxylic acid amides with potent anti-proliferative activity on human cancer cell lines. Eur J Med Chem 2014;87:140–9. doi: 10.1016/j.ejmech.2014.09.056
- Ke J., Lu Q., Wang X. et al. Discovery of 4,5-dihydro-1Hthieno[2’,3’:2,3]thiepino [4,5-c]pyrazole-3-carboxamide derivatives as the potential epidermal growth factor receptors for tyrosine kinase inhibitors. Molecules 2018;23:1980. doi: 10.3390/molecules23081980
- Lin T., Li J., Liu L. et al. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur J Med Chem 2021;215:113281. doi: 10.1016/j.ejmech.2021.113281
- Yasuda Y., Arakawa T., Nawata Y. et al. Design, synthesis, and structure-activity relationships of 1-ethylpyrazole-3-carboxamide compounds as novel hypoxia-inducible factor (HIF)-1 inhibitors. Bioorg Med Chem 2015;23(8):1776–87. doi: 10.1016/j.bmc.2015.02.038
- Gul H.I., Mete E., Eren S.E. et al. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydropyrazol-1-yl]benzenesulfonamides. J Enzyme Inhib Med Chem 2017;32(1):169–75. doi: 10.1080/14756366.2016.1243536
- Gul H.I., Yamali C., Bulbuller M. et al. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorg Chem 2018;78: 290–7. doi: 10.1016/j.bioorg.2018.03.027
- Gul H.I., Yamali C., Sakagami H. et al. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg Chem 2018;77:411–9. doi: 10.1016/j.bioorg.2018.01.021
- Yamali C., Sakagami H., Uesawa Y. et al. Comprehensive study on potent and selective carbonic anhydrase inhibitors: synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1Hpyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021;217:113351. doi: 10.1016/j.ejmech.2021.113351
- Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. doi: 10.1124/mol.107.034876
- Da C., Telang N., Barelli P. et al. Pyrrole-based antitubulin agents: two distinct binding modalities are predicted for C-2 analogues in the colchicine site. ACS Med Chem Lett 2012;3(1):53–7. doi: 10.1021/ml200217u
- Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diary l pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. doi: 10.1016/j.ejmech.2021.113229
Дополнительные файлы


