Cellular microenvironment as an object of targeted therapy for malignant neoplasms
- Authors: Zyablitskaya E.Y.1, Kubyshkin A.V.1, Sorokina L.E.1, Serebryakova A.V.1, Aliev K.A.1, Maksimova P.E.1, Lazarev A.E.1, Balakchina A.I.1, Golovkin I.O.1
-
Affiliations:
- S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
- Issue: Vol 10, No 4 (2023)
- Pages: 8-20
- Section: REVIEW
- Published: 14.12.2023
- URL: https://umo.abvpress.ru/jour/article/view/604
- DOI: https://doi.org/10.17650/2313-805X-2023-10-4-8-20
- ID: 604
Cite item
Full Text
Abstract
The dynamic relationships between tumor cells and their microenvironment are of crucial importance in the development and progression of the malignant process. Given the multifunctional potential of heterogeneous populations surrounding a tumor, targeting components of the microenvironment has long been regarded as a promising strategy in modern anticancer therapy. This review discusses the role of the components of the cellular microenvironment in carcinogenesis, analyzes in detail the main ways and mechanisms of action on the main cell populations, which are of the greatest interest in the context of the development of innovative anticancer therapy.
About the authors
E. Yu. Zyablitskaya
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Author for correspondence.
Email: evgu79@mail.ru
ORCID iD: 0000-0001-8216-4196
Evgenia Yu. Zyablitskaya.
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationA. V. Kubyshkin
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0002-9400-1826
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationL. E. Sorokina
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0002-1862-6816
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationA. V. Serebryakova
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0002-1048-5158
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationK. A. Aliev
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0003-3911-1245
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationP. E. Maksimova
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0001-5920-8664
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationA. E. Lazarev
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0003-2684-3834
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationA. I. Balakchina
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0001-6239-885X
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationI. O. Golovkin
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0002-3578-5130
Bld. 7, 5 Lenin Boulevard, Simferopol 295051
Russian FederationReferences
- Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 2013;4(1):66–83. doi: 10.7150/jca.5112
- Zibirov R.F., Mozerov S.A. Characterization of the tumor cell microenvironment. Onkologiya. Zhurnal im. P.A. Gercena = P.A. Herzen Journal of Oncology 2018;7(2):67–72. (In Russ.). doi: 10.17116/onkolog20187267-72
- Ataei A., Solovyeva V.V., Rizvanov A.A., Arab S.Sh. Tumor microenvironment: a key contributor to cancer progression, invasion, and drug resistance. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki = Scientific notes of Kazan University. Series “Natural Sciences” 2020;162:507–28. (In Russ.). doi: 10.26907/2542-064X.2020.4.507-528
- Krahmal’ N.V., Zav’jalova M.V., Denisov E.V. et al. Invasion of tumor epithelial cells: mechanisms and manifestations. Acta Naturae 2015;7(2):18–31. (In Russ.).
- Dudley A.C. Tumor endothelial cells. Cold Spring Harb Perspect Med 2012;2(3):a006536. doi: 10.1101/cshperspect.a006536
- Baghban R., Roshangar L., Jahanban-Esfahlan R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020;18(1):59. doi: 10.1186/s12964-020-0530-4
- Gille H., Kowalski J., Li B. et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2): a reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 2001;276:3222–30. doi: 10.1074/jbc.M002016200
- Daei Farshchi Adli A., Jahanban-Esfahlan R., Seidi K. et al. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem Biol Drug Des 2018;91(5):996–1006. doi: 10.1111/cbdd.13166
- Zhang Y., Xiong X., Huai Y. et al. Gold nanoparticles disrupt tumor microenvironment – endothelial cell cross talk to inhibit angiogenic phenotypes in vitro. Bioconjug Chem 2019;30(6):1724–33. doi: 10.1021/acs.bioconjchem.9b00262
- Nomura T., Yamakawa M., Shimaoka T. et al. Development of dendritic cell-based immunotherapy targeting tumor blood vessels in a mouse model of lung metastasis. Biol Pharm Bull 2019;42(4):645–8. doi: 10.1248/bpb.b18-00737
- Liu T., Zhou L., Li D. et al. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 2019;7:60. doi: 10.3389/fcell.2019.00060
- Puré E., Hingorani S.R. Mesenchymal cell plasticity and perfidy in epithelial malignancy. Trends Cancer 2018;4(4):273–7. doi: 10.1016/j.trecan.2018.02.007
- Shiga K., Hara M., Nagasaki T. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers 2015;7(4):2443–58. doi: 10.3390/cancers7040902
- Ermakov M.S., Nushtaeva A.A., Richter V.A., Koval O.A. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding 2022;26(1):14–21. (In Russ.). doi: 10.18699/VJGB-22-03
- Hosein A.N., Wu M., Arcand S.L. et al. Breast carcinoma-associated fibroblasts rarely contain p53 mutations or chromosomal aberrations. Cancer Res 2010;70(14):5770–7. doi: 10.1158/0008-5472.CAN-10-0673
- Oleynikova N.А., Danilova N.V., Mikhailov I.A. et al. Cancer-associated fibroblasts and their significance in tumor progression. Arkhiv Patologii = Pathology Archive 2020;82(1):68–77. (In Russ.). doi: 10.17116/patol20208201168
- Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 2016;16(9):582–98. doi: 10.1038/nrc.2016.73
- Monteran L., Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol 2019;10:1835. doi: 10.3389/fimmu.2019.01835
- Jones J.O., Moody W.M., Shields J.D. Microenvironmental modulation of the developing tumor: an immune-stromal dialogue. Mol Oncol 2021;15(10):2600–33. doi: 10.1002/1878-0261.12773
- Pavlides S., Whitaker-Menezes D., Castello-Cros R. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009;8(23):3984–4001. doi: 10.4161/cc.8.23.10238
- Jiang G.M,. Xu W., Du J. et al. The application of the fibroblast activation protein alpha-targeted immunotherapy strategy. Oncotarget 2016;7(22):33472–82. doi: 10.18632/oncotarget.8098
- Yoshida T., Ishii G., Goto K. et al. Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clinl Cancer Res 2015;21(3):642–51. doi: 10.1158/1078-0432.CCR-14-0846
- Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41(1):49–61. doi: 10.1016/j.immuni.2014.06.010
- Laviron M., Boissonnas A. Ontogeny of tumor-associated macrophages. Front Immunol 2019;10:1799. doi: 10.3389/fimmu.2019.01799
- Mantovani A., Sica A., Sozzani S. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25(12):677–86. doi: 10.1016/j.it.2004.09.015
- Nesbit M., Schaider H., Miller T.H., Herlyn M. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 2001;166(11):6483–90. doi: 10.4049/jimmunol.166.11.6483
- Porta C., Subhra Kumar B., Larghi P. et al. Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 2007;604: 47–86. doi: 10.1007/978-0-387-69116-9_5
- Valkovic T., Dobrila F., Melato M. et al. Correlation between vascular endothelial growth factor, angiogenesis and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 2002;440(6):583–8. doi: 10.1007/s004280100458
- Chen Y., Tan W., Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther 2018;11:3817–26. doi: 10.2147/OTT.S168317
- Mantovani A., Marchesi F., Malesci A. et al. Tumor-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14(7):399–416. doi: 10.1038/nrclinonc.2016.217
- Van Rooijen N., Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994;174(1–2):83–93. doi: 10.1016/0022-1759(94)90012-4
- Banciu M., Metselaar J.M., Schiffelers R.M., Storm G. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia 2008;10(2):108–17. doi: 10.1593/neo.07913
- Sato K., Fujita S. Dendritic cells: nature and classification. Allergol Int 2007;56(3):183–91. doi: 10.2332/allergolint.R-06-139
- Oleinik E.K., Shibaev M.I., Ignatiev KS. et al. Tumor microenvironment: the formationof the immune profile. Medicinskaya immunologiya = Medical Immunology. 2020;22(2):207–20. (In Russ.). doi: 10.15789/1563-0625-TMT-1909
- Shurin M.R., Yurkovetsky Z.R., Tourkova I.L. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 2002;101(1):61–8. doi: 10.1002/ijc.10576
- Manavalan J.S., Rossi P.C., Vlad G. et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003;11(3–4):245–58. doi: 10.1016/s0966-3274(03)00058-3
- Liu Q., Zhang C., Sun A. et al. Tumor-educated CD11 bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 2009;182(10):6207–16. doi: 10.4049/jimmunol.0803926
- Anandasabapathy N., Victora G.D., Meredith M. et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 2011;208(8):1695–705. doi: 10.1084/jem.20102657
- Salmon H., Idoyaga J., Rahman A. et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 2016;44(4):924–38. doi: 10.1016/j.immuni.2016.03.012
- Anandasabapathy N., Breton G., Hurley A. et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant 2015;50(7):924–30. doi: 10.1038/bmt.2015.74
- Agrawal V., Benjamin K.T., Ko E.C. Radiotherapy and immunotherapy combinations for lung cancer. Curr Oncol Rep 2020;23(1):4. doi: 10.1007/s11912-020-00993-w
- Anguille S., Smits E.L., Lion E. et al. Clinical use of dendritic cells for cancer therapy. Lancet Oncol 2014;15(7):e257–67. doi: 10.1016/s1470-2045(13)70585-0
- Jiang Y., Li Y., Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis 2015;6(6):e1792. doi: 10.1038/cddis.2015.162
- Chang C.H., Curtis J.D., Maggi L.B. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013;153(6):1239–51. doi: 10.1016/j.cell.2013.05.016
- Fife B.T., Bluestone J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166–82. doi: 10.1111/j.1600-065X.2008.00662.x
- Leach D.R., Krummel M.F., Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271(5256):1734–6. doi: 10.1126/science.271.5256.1734
- Kwon E.D., Hurwitz A.A., Foster B.A. et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997;94(15):8099–103. doi: 10.1073/pnas.94.15.8099
- Hurwitz A.A., Yu T.F., Leach D.R., Allison J.P. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 1998;95(17):10067–71. doi: 10.1073/pnas.95.17.10067
- Hodi F.S., O’Day S.J., McDermott D.F. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363(8):711–23. doi: 10.1056/NEJMoa1003466
- Weber J.S., D’Angelo S.P., Minor D. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015;16(4):375–84. doi: 10.1016/S1470-2045(15)70076-8
- Robert C., Schachter J., Long G.V. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015;372(26):2521–32. doi: 10.1056/NEJMoa1503093
- Robert C., Long G.V., Brady B. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372(4):320–30. doi: 10.1056/NEJMoa1412082
- Gong J., Chehrazi-Raffle A., Reddi S., Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 2018;6(1):8. doi: 10.1186/s40425-018-0316-z
- Mann J.E. Atezolizumab (tecentriq®). Oncology Times 2017;39(4):31. doi: 10.1097/01.cot.0000513325.52233.f1
- Zlatnik E.Yu., Sitkovskaja A.O., Nepomnjashhaja E.M. et al. Achievements and prospects of cellular technologies based on activated lymphocytes in the treatment of malignant tumors. Kazanskij medicinskij zhurnal = Kazan Medical Journal 2018;99(5):792–801. (In Russ.). doi: 10.17816/KMJ2018–792
- Rosenberg S.A., Mulé J.J., Spiess P.J. et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985;161(5):1169–88. doi: 10.1084/jem.161.5.1169
- Jackson H.J., Rafiq S., Brentjens R.J. Driving CAR T-cells forward. Nat Rev Clin Oncol 2016;13(6):370–83. doi: 10.1038/nrclinonc.2016.36
- Ustjugova E.A., Savkina M.V., Gorjaev A.A. et al. The use of biomedical cell products for the treatment of oncological diseases. BIO-preparaty. Profilaktika, diagnostika, lechenie = BIO medication. Prevention, diagnosis, treatment 2019;19(4):206–14. (In Russ.). doi: 10.30895/2221-996X-2019-19-4-206-214
- Chang Z.L., Lorenzini M.H., Chen X. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 2018;14(3):317–24. doi: 10.1038/nchembio.2565
- Hartmann J., Schüßler-Lenz M., Bondanza A., Buchholz C.J. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017;9(9):1183–97. doi: 10.15252/emmm.201607485
Supplementary files


