Integration of phosphoinositide 3-kinase (PI3K) and transforming growth factor β1 (TGF-β1) signaling cascades: role in the therapeutic inefficiency of tamoxifen
- Authors: Babyshkina N.N.1,2, Uzyanbaev .A.2, Dronova .A.1, Cherdyntseva N.V.1
-
Affiliations:
- Cancer Research Instituteof Tomsk National Research Medical Center of the Russian Academy of Sciences
- Siberian State Medical University
- Issue: Vol 10, No 4 (2023)
- Pages: 47-60
- Section: REVIEW
- Published: 15.12.2023
- URL: https://umo.abvpress.ru/jour/article/view/609
- DOI: https://doi.org/10.17650/2313-805X-2023-10-4-47-60
- ID: 609
Cite item
Full Text
Abstract
Growth factors signaling cascades and their interaction with the central regulatory targets of tumor cells and estrogens are considered as the main mechanisms of hormonal resistance in breast cancer. The integration of the transforming growth factor β1 (TGF-β1) and PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signaling pathway may result in the activation of proliferation and, as a result, the development of an in-effective response to therapy and disease progression. The review summarizes a systematic analysis of the literature data on the role of TGF-β1 signaling in the mechanisms of tamoxifen resistance to in the aspect of interaction with the PI3K/Akt/mTOR. The interaction between the estrogen receptors α signaling and tamoxifen, the mechanisms of regulatory activation of TGF-β1 and PI3K/Akt/mTOR, as well as their contribution to the tamoxifen response are considered. The direct involvement of TGF-β1/PI3K in the mechanisms of tamoxifen resistance to determines the prospects for studying the effector of these cascades as molecular targets. The knowledge accumulated to date allows considering the TGF-β1/PI3K signaling pathway as a potential molecular tool for the search for effective strategies for blocking the resistance of tumor cells to tamoxifen.
About the authors
N. N. Babyshkina
Cancer Research Instituteof Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Author for correspondence.
Email: nbabyshkina@mail.ru
ORCID iD: 0000-0002-0562-3878
Nataliya N. Babyshkina.
5 Kooperativny Line, Tomsk 634009, Russia; 2 Moskovsky Trakt, Tomsk 634050
Russian FederationI. A. Uzyanbaev
Siberian State Medical University
Email: fake@neicon.ru
2 Moskovsky Trakt, Tomsk 634050
Russian FederationT. A. Dronova
Cancer Research Instituteof Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0003-3009-2404
5 Kooperativny Line, Tomsk 634009
Russian FederationN. V. Cherdyntseva
Cancer Research Instituteof Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0003-1526-9013
5 Kooperativny Line, Tomsk 634009
Russian FederationReferences
- Malignant neoplasms in Russia in 2021 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinskiy, A.O. Shakhzadova. Moscow: FSBI “MNIOI named after P.A. Herzen” of the Ministry of Health of Russia, 2022. 252 p. (In Russ.).
- Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020. Int J Cancer 2021;10:778–89. doi: 10.1002/ijc.33588
- Burstein H.J., Curigliano G., Thürlimann B. et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann Oncol 2021;32(10):1216–35. doi: 10.1016/j.annonc.2021.06.023
- Jordan V.C. The role of tamoxifen in the treatment and prevention of breast cancer. Curr Probl Cancer 1992;16(3):129–76. doi: 10.1016/0147-0272(92)90002-6
- Zarzynska J.M. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014;2014:141747. doi: 10.1155/2014/141747
- Silberstein G.B., Daniel C.W. Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 1987;237(4812):291–3. doi: 10.1126/science.3474783
- Knabbe C., Lippman M.E., Wakefield L.M., et al. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 1987;48(3):417–28. doi: 10.1016/0092-8674(87)90193-0
- Lamouille S., Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 2007;178(3):437–51. doi: 10.1083/jcb.200611146
- Yoo Y.A., Kim Y.H., Kim J.S. et al. The functional implications of Akt activity and TGF-beta signaling in tamoxifen-resistant breast cancer. Biochim Biophys Acta 2008;1783(3):438–47. doi: 10.1016/j.bbamcr.2007.12.001
- Nardone A., De Angelis C., Trivedi M.V., et al. The changing role of ER in endocrine resistance. Breast 2015;242(2):60–6. doi: 10.1016/j.breast.2015.07.015
- Fuentes N., Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019;116:135–70. doi: 10.1016/bs.apcsb.2019.01.00
- Dahlman-Wright K., Cavailles V., Fuqua S.A. et al. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 2006;58(4):773–81. doi: 10.1124/pr.58.4.8
- O’Lone R., Frith M.C., Karlsson E.K. et al. Genomic targets of nuclear estrogen receptors. Mol Endocrinol 2004;18(8):1859–75. doi: 10.1210/me.2003-0044
- Klinge C.M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 2000;29(14):2905–19. doi: 10.1093/nar/29.14.2905
- Filardo E.J., Quinn J.A., Bland K.I. et al. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000;14(10):1649–60. doi: 10.1210/mend.14.10.0532
- Filardo E.J., Quinn J.A., Frackelton A.R. et al. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 2002;16(1):70–84. doi: 10.1210/mend.16.1.0758
- Koszegi Z., Cheong R.Y. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front Endocrinol (Lausanne) 2022;13:999236. doi: 10.3389/fendo.2022.999236
- Prossnitz E.R., Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 2011;7(12):715–26. doi: 10.1038/nrendo.2011.122
- Ali S., Rasool M., Chaoudhry H. et al. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation 2016;12(3):135–9. doi: 10.6026/97320630012135
- Hörlein A.J., Näär A.M., Heinzel T. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995;377(6548):397–404. doi: 10.1038/377397a0
- Heldring N., Pawson T., McDonnell D. et al. Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 2007;282(14):10449–55. doi: 10.1074/jbc.M611424200
- De Amicis F., Zupo S., Panno M.L. et al. Progesterone receptor B recruits a repressor complex to a half-PRE site of the estrogen receptor alpha gene promoter. Mol Endocrinol 2009;23(4):454–65. doi: 10.1210/me.2008-0267
- Bartella V., Rizza P., Barone I. et al. Estrogen receptor beta binds Sp1 and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Res Treat 2012;134(2):569–81. doi: 10.1007/s10549-012-2090-9
- Hurtado A., Holmes K.A., Geistlinger T.R. et al. Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 2008;456(7222):663–6. doi: 10.1038/nature07483
- Syed V. TGF-β signaling in cancer. J Cell Biochem 2016;117(6):1279–87. doi: 10.1038/nature07483
- Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641. doi: 10.1146/annurev.cb.06.110190.003121
- Gentry L.E., Lioubin M.N., Purchio A.F. et al. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol 1988;8(10):4162–8. doi: 10.1128/mcb.8.10.4162–4168
- Piek E., Heldin C.H., Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999;13(15):2105–24.
- Papageorgis P. TGFβ signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol 2015;2015:587193. doi: 10.1155/2015/587193
- Lin H.Y., Wang X.F. Expression cloning of TGF-beta receptors. Mol Reprod Dev 1992;32(2):105–10. doi: 10.1002/mrd.1080320205.
- Massagué J. A very private TGF-beta receptor embrace. Mol Cell 2008;29(2):149–50. doi: 10.1016/j.molcel.2008.01.006
- Tzavlaki K., Moustakas A. TGF-β signaling. Biomolecules 2020;10(3):487. doi: 10.3390/biom10030487
- Denicourt C., Dowdy S.F. Another twist in the transforming growth factor beta-induced cell-cycle arrest chronicle. Proc Natl Acad Sci USA 2003;100(26):15290–301. doi: 10.1073/pnas.0307282100
- Babyshkina N., Malinovskaya E., Stakheyeva M. et al. Association of functional -509c>t polymorphism in the TGF-β1 gene with infiltrating ductal breast carcinoma risk in a Russian western Siberian population. Cancer Epidemiol 2011;35(6):560–63. doi: 10.1016/j.canep.2011.02.002
- Barcellos-Hoff M.H., Akhurst R.J. Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res 2009;11(1):202–7. doi: 10.1186/bcr2224
- Lee M.K., Pardoux C., Hall M.C. et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 2007;26(17):3957–67. doi: 10.1038/sj.emboj.7601818
- McKay M.M., Morrison D.K. Integrating signals from RTKs to ERK/MAPK. Oncogene 2007;26(22):3113–22. doi: 10.1038/sj.onc.1210394
- van der Geer P., Hunter T., Lindberg R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343
- Zhang Y.E. Non-Smad pathways in TGF-beta signaling. Cell Res 2009;19(1):128–39. doi: 10.1038/cr.2008.328
- Kim S., Kim S.A., Han J., et al. Rho-Kinase as a target for cancer therapy and its immunotherapeutic potential. Int J Mol Sci 2021;22(23):12916–36. doi: 10.3390/ijms222312916
- Sahai E., Marshall C.J. RHO-GTPases and cancer. Nat Rev Cancer 2002;2(2):133–42. doi: 10.1038/nrc725
- Panková K., Rösel D., Novotný M. et al. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci 2010;67(1):63–71. doi: 10.1007/s00018-009-0132-1
- Taddei M.L., Giannoni E., Morandi A. et al. Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Commun Signal 2014;12:24–35. doi: 10.1186/1478-811X-12-24
- Yamashita M., Fatyol K., Jin C. et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 2008;31(6):918–24. doi: 10.1016/j.molcel.2008.09.002
- Paplomata E., O’Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol 2014;6(4):154–66. doi: 10.1177/1758834014530023
- Backer J.M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 2008;410(1):1–17. doi: 10.1042/BJ20071427
- Vadas O., Burke J.E., Zhang X. et al. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci Signal 2011;4(195):re2. doi: 10.1126/scisignal.2002165
- Brown J.R., Auger K.R. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evol Biol 2011;11:4–17. doi: 10.1186/1471-2148-11-4
- Yu X., Long Y.C., Shen H.M. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015;11(10):1711–28. doi: 10.1080/15548627.2015.1043076
- Falasca M., Hughes W.E., Dominguez V. et al. The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 2007;282(38):28226–36. doi: 10.1074/jbc.M704357200
- Braccini L., Ciraolo E., Campa C.C. et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun 2015;6:7400–15. doi: 10.1038/ncomms8400
- Backer J.M. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 2016;473(15): 2251–71. PMID: 35295334. doi: 10.3389/fphar.2022.791272
- Hinz N., Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019;17(1):154–82. doi: 10.1186/s12964-019-0450-3
- Kim C.Y., Kim Y.C., Oh J.H. et al. HOXA5 confers tamoxifen resistance via the PI3K/AKT signaling pathway in ER-positive breast cancer. J Cancer 2021;12(15):4626–37. doi: 10.7150/jca.59740
- Hamadneh L., Bahader M., Abuarqoub R. et al. PI3K/AKT and MAPK1 molecular changes preceding matrix metallopeptidases overexpression during tamoxifen-resistance development are correlated to poor prognosis in breast cancer patients. Breast Cancer 2021;28(6):1358–66. doi: 10.1007/s12282-021-01277-2
- Tanic N., Milovanovic Z., Tanic N. et al. The impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen treatment in breast cancer patients. Cancer Biol Ther 2012;13(12):1165–74. doi: 10.4161/cbt.21346
- Hamadneh L., Abuarqoub R., Alhusban A. et al. Upregulation of PI3K/AKT/PTEN pathway is correlated with glucose and glutamine metabolic dysfunction during tamoxifen resistance development in MCF-7 cells. Sci Rep 2020;10:21933–40. doi: 10.1038/s41598-020-78833-x
- Baba A.B., Rah B., Bhat G.R. et al. Transforming growth factor-beta (TGF-β) signaling in cancer-A betrayal within. Front Pharmacol 2022;13:791272–87. doi: 10.3389/fphar.2022.791272
- Bakin A.V., Tomlinson A.K., Bhowmick N.A. et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000;275(47):36803–10. doi: 10.1074/jbc.M005912200
- Jechlinger M., Sommer A., Moriggl R. et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 2006;116(6):1561–70. doi: 10.1172/JCI24652
- Yi J.Y., Shin I., Arteaga C.L. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 2005;280(11):10870–76. doi: 10.1074/jbc.M413223200
- Viñals F., Pouysségur J. Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Сell Вiol 2001;21(21):7218–30. doi: 10.1128/MCB.21.21.7218-7230.2001
- Valderrama-Carvajal H., Cocolakis E., Lacerte A. et al. Activin/ TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 2002;4(12):963–9. doi: 10.1038/ncb885
- Conery A.R., Cao Y., Thompson E.A. et al. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 2004;6(4):366–72. doi: 10.1038/ncb1117
- Perry R.R., KangY., Greaves B.R. Relationship between tamoxifen induced transforming growth factor beta 1 expression, cytostasis and apoptosis in human breast cancer cells. Br J Cancer 1995;72(6):1441–6. doi: 10.1038/bjc.1995.527
- Fry M.J. Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 2001;3(5):304–12. doi: 10.1186/bcr312
- Jordan N.J., Gee J.M., Barrow D. et al. Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 2004;87(2):167–80. doi: 10.1023/B:BREA.0000041623.21338.47
- Dronova T.A., Babyshkina N.N., Zavyalova M.V. et al. Relation of EGFR/PI3K/AKT signaling components with tamoxifen efficacy in patients with estrogen-dependent breast cancer. Uspehi Molekulârnoj Onkologii = Advances in Molecular Oncology 2018;5(3):40–50. (In Russ.). doi: 10.17650/2313-805X-2018-5-3-40-50
- Frogne T., Jepsen J.S., Larsen S.S. et al. Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. Endocr Relat Cancer 2005;12(3):599–614. doi: 10.1677/erc.1.00946
- Beeram M., Tan Q.T., Tekmal R.R. et al. Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol 2007;18(8):1323–8. doi: 10.1093/annonc/mdm170
- Dronova T.A., Babyshkina N.N., Slonimskya E.M. et al. Transforming growth factor receptor type II (TGFβR2) and pAKT: association with hormone-resistant phenotype in estrogen receptor-positive breast cancer. V knige: VII Peterburgskij mezhdunarodnyj onkologicheskij forum «Belye Nochi 2021». Materialy VII Peterburgskogo mezhdunarodnogo onkologicheskogo foruma. Sankt-Peterburg. In: VII St. Petersburg International Oncology Forum “White Nights 2021”. Materials of the VII St. Petersburg International Oncology Forum. Staint Petersburg, 2021. P. 255. (In Russ.).
- Fan M., Yan P.S., Hartman-Frey C. et al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res 2006;66(24):11954–66. doi: 10.1158/0008-5472
- Radiation therapy and M7824 in treating patients with metastatic hormone receptor positive, HER2 negative breast cancer. Available at: https://clinicaltrials.gov/study/NCT03524170.
- Formenti S.C., Lee P., Adams S. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin Cancer Res 2018;24(11):2493–2504. doi: 10.1158/1078-0432.CCR-17-3322
- Jung S.Y., Yug J.S., Clarke J.M. et al. Population pharmacokinetics of vactosertib, a new TGF-β receptor type Ι inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020;85(1):173–83. doi: 10.1007/s00280-019-03979-z
- Baselga J., Im S.A., Iwata H. et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2017;18(7):904–16. doi: 10.1016/S1470-2045(17)30376-5
- Di Leo A., Johnston S., Lee K.S. et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2018;19(1):87–100. doi: 10.1016/S1470-2045(17)30688-5
- Krop I.E., Mayer I.A., Ganju V. et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2016;17(6):811–21. doi: 10.1016/S1470-2045(16)00106-6
- Baselga J., Dent S.F. Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. J Clin Oncol 2018:36(Suppl. 18):LBA1006. doi: 10.1200/JCO.2018.36.18_suppl.LBA1006
- Markham A. Alpelisib: first global approval. Drugs 2019;79(11):1249–53. doi: 10.1007/s40265-019-01161-6
- André F., Ciruelos E., Rubovszky G. et al. SOLAR-1 Study Group. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 2019;380(20):1929–40. doi: 10.1056/NEJMoa1813904
- Lu Y.S., Lee K.S., Chao T.Y. et al. A Phase Ib study of alpelisib or buparlisib combined with tamoxifen plus goserelin in premenopausal women with HR-positive HER2-negative advanced breast cancer. Clin Cancer Res 2021;27(2):408–17. doi: 10.1158/1078-0432.CCR-20-1008
- ClinicalTrials.gov. to evaluate the safety, tolerability, and pharmacokinetics of inavolisib single agent in participants with solid tumors and in combination with endocrine and targeted therapies in participants with breast cancer. Available at: https://clinicaltrials.gov/study/NCT03006172
- Jones R.H., Casbard A., Carucci M. et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2020;21(3):345–57. doi: 10.1016/S1470-2045(19)30817-4
- Ma C.X., Suman V., Goetz M.P. et al. A Phase II trial of neoadjuvant MK-2206, an AKT Inhibitor, with anastrozole in clinical stage II or III PIK3CA-mutant ER-positive and HER2-negative breast cancer. Clin Cancer Res 2017;23(22):6823–32. doi: 10.1158/1078-0432.CCR-17-1260
Supplementary files


