Иммунотерапия злокачественных глиом: современное состояние проблемы

Обложка

Цитировать

Полный текст

Аннотация

Злокачественные глиомы являются наиболее распространенными опухолями из клеток глиального ряда головного мозга у взрослых и характеризуются крайне неблагоприятным прогнозом. Терапия злокачественных глиом, как правило, включает максимально радикальное хирургическое удаление опухоли с последующим проведением лучевой терапии и/или химиотерапии.
В обзоре представлены основные клинико-морфологические и молекулярно-генетические характеристики глиом, их прогностическая значимость, а также роль в выборе тактики таргетной терапии с использованием соответствующих ингибиторов тирозинкиназ и моноклональных антител. Особое внимание уделяется современным аспектам в области иммунотерапии злокачественных глиом, таким как активация иммунных клеток и блокирование различных механизмов, используемых опухолью для уклонения от иммунной системы. Одним из наиболее изученных направлений иммунотерапии злокачественных новообразований является применение ингибиторов контрольных точек иммунного ответа. Данные препараты могут быть эффективны в лечении злокачественных глиом, в которых отмечается гиперэкспрессия молекул, оказывающих супрессорное действие на клетки иммунной системы. Еще одним перспективным направлением иммунотерапии является использование генетически модифицированных CAR-T-клеток (CAR – химерный антигенный рецептор), что подразумевает применение модифицированных иммунных клеток, способных распознавать и уничтожать опухолевые клетки. Помимо этого, к перспективным подходам иммунотерапии глиом относят цитокинотерапию и генную терапию, связанную c генным редактированием вирусов для производства онколитических вирусных вакцин. Разрабатываются вакцины, содержащие специфичные для опухолевых клеток антигены, которые могут стимулировать иммунную систему для их распознавания и последующего уничтожения.
Несмотря на перспективность иммунотерапии глиом, многие вышеперечисленные иммунотерапевтические подходы к лечению злокачественных глиом находятся на различных стадиях доклинических и клинических исследований, результаты некоторых из которых многообещающие.

Об авторах

А. А. Пичугин

ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России; ГАУЗ «Межрегиональный клинико-диагностический центр»

Email: fake@neicon.ru
ORCID iD: 0000-0002-0134-1005

420012 Казань, ул. Бутлерова, 49

420101 Казань, ул. Карбышева, 12А

Россия

Р. Р. Ковязина

Университет герцога Куньшаня

Email: fake@neicon.ru
ORCID iD: 0000-0002-6165-3668

215316 Куньшань, Цзянсу, Дьюк Авеню, 8

Китай

А. А. Трондин

Клиника Сан-Карлос

Email: fake@neicon.ru
ORCID iD: 0000-0002-8046-2533

28040 Мадрид, Calle del Prof Martín Lagos, S/N, Moncloa – Aravaca

Испания

А. Г. Алексеев

ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России; ГАУЗ «Межрегиональный клинико-диагностический центр»

Email: fake@neicon.ru
ORCID iD: 0000-0003-1227-8918

420012 Казань, ул. Бутлерова, 49

420101 Казань, ул. Карбышева, 12А

Россия

П. Б. Копнин

Научно-исследовательский институт канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0002-2078-4274

115522 Москва, Каширское шоссе, 24

Россия

Т. В. Гессель

ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0009-0003-4348-9141

420012 Казань, ул. Бутлерова, 49

Россия

С. В. Бойчук

ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Автор, ответственный за переписку.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084

Сергей Васильевич Бойчук

420012 Казань, ул. Бутлерова, 49

125993 Москва, ул. Баррикадная, 2/1, стр. 1

Россия

Список литературы

  1. Barh D., Carpi A., Verm M. et al. Cancer biomarkers: minimal and noninvasive early diagnosis and prognosis. NY: CRC Press, 2014.
  2. Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. doi: 10.1093/neuonc/noab106
  3. Кобяков Г.Л., Бекяшев А.Х., Голанов А.В. и др. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы. Злокачественные опухоли 2018;8(3):83–99. doi: 10.18027/2224-5057-2018-8-3s2-83-99
  4. Verhaak R.G., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98–110. doi: 10.1016/j.ccr.2009.12.020
  5. Ma R., Taphoorn M.J., Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry 2021;92(10):1103–11. doi: 10.1136/jnnp-2020-325334
  6. Генс Г.П., Саникович В.Д., Милейко В.А., Лебедева А.А. Глиобластома: молекулярно-генетический портрет и современные терапевтические стратегии лекарственного лечения. Успехи молекулярной онкологии 2021;8(3):60–76. doi: 10.17650/2313-805X-2021-8-3-60-76
  7. Rocha Pinheiro S.L., Lemos F.F.B., Marques H.S. et al. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023;14(4):138–59. doi: 10.5306/wjco.v14.i4.138
  8. Agosti E., Zeppieri M., De Maria L. et al. Glioblastoma immunotherapy: a systematic review of the present strategies and prospects for advancements. Int J Mol Sci 2023;24(20):15037. doi: 10.3390/ijms242015037
  9. Coxon A.T., Johanns T.M., Dunn G.P. An innovative immunotherapy vaccine with combination checkpoint blockade as a first line treatment for glioblastoma in the context of current treatments. Mo Med 2020;117(1):45–9.
  10. Коновалов Н.А., Асютин Д.С., Шайхаев Е.Г. и др. Молекулярные биомаркеры астроцитом головного и спинного мозга. Acta Naturae (русскоязычная версия) 2019;11;2(41):17–27.
  11. Кузнецова Н.С., Гурова С.В., Гончарова A.С. и др. Современные подходы к терапии глиобластомы. Южно-Российский онкологический журнал 2023;4(1):52–64. doi: 10.37748/2686-9039-2023-4-1-6
  12. Тимофеева С.В., Ситковская А.О., Новикова И.А. и др. Современные достижения CAT-T иммунотерапии для лечения глиобластомы. Медицинская иммунология 2021;23(3):483–96. doi: 10.15789/1563-0625-RAI-2111
  13. Yang H., Ye D., Guan K.L. et al. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012;18(20):5562–71. doi: 10.1158/1078-0432.CCR-12-1773
  14. Dang L., White D.W., Gross S. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462(7274):739–44. doi: 10.1038/nature08617
  15. Noushmehr H., Weisenberger D.J., Diefes K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17(5):510–22. doi: 10.1016/j.ccr.2010.03.017
  16. Yan H., Parsons D.W., Jin G. et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360(8):765–73. doi: 10.1056/NEJMoa0808710
  17. Huse J.T., Aldape K.D. The evolving role of molecular markers in the diagnosis and management of diffuse glioma. Clin Cancer Res 2014;20(22):5601–11. doi: 10.1158/1078-0432.CCR-14-0831
  18. Zou P., Xu H., Chen P. et al. IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS One 2013;8(7):e68782. doi: 10.1371/journal.pone.0068782
  19. Anderson M.D., Gilbert M.R. Clinical discussion of the management of anaplastic oligodendroglioma/oligoastrocytoma (both codeleted and nondeleted). J Natl Compr Canc Netw 2014;12(5):665–72. doi: 10.6004/jnccn.2014.0070
  20. Jiao Y., Killela P.J., Reitman Z.J. et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012;3(7):709–22. doi: 10.18632/oncotarget.588
  21. Karsy M., Guan J., Cohen A.L. et al. New molecular considerations for glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 2017;17(2):19. doi: 10.1007/s11910-017-0722-5
  22. England B., Huang T., Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol 2013;34(4):2063–74. doi: 10.1007/s13277-013-0871-3
  23. Kamran N., Alghamri M.S., Nunez F.J. et al. Current state and future prospects of immunotherapy for glioma. Immunotherapy 2018;10(4):317–39. doi: 10.2217/imt-2017-0122
  24. Marumoto T., Saya H. Molecular biology of glioma. Adv Exp Med Biol 2012;746:2–11. doi: 10.1007/978-1-4614-3146-6_1
  25. Network T.C. Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2013;494(7438):506. doi: 10.1038/nature11903
  26. Galbraith K., Snuderl M. Molecular pathology of gliomas. Surg pathol clin 2021;14(3):379–86. doi: 10.1016/j.path.2021.05.003
  27. Halperin E.C., Brady L.W., Wazer D.E. et al. Perez & Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins, 2013.
  28. Ostrom Q.T., Patil N., Cioffi G. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 2020;22(12 Suppl. 2): iv1–96. doi: 10.1093/neuonc/noaa200
  29. Maire C.L., Ligon K.L. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro Oncol 2014; 16(Suppl. 8):viii1–6. doi: 10.1093/neuonc/nou294
  30. Westphal M., Maire C.L., Lamszus K. EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs 2017;31(9):723–35. doi: 10.1007/s40263-017-0456-6
  31. Yamazaki H., Ohba Y., Tamaoki N. et al. A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors. Jpn J Cancer Res 1990;81(8):773–9. doi: 10.1111/j.1349-7006.1990.tb02644.x
  32. Pearson J.R.D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017;2:17040. doi: 10.1038/sigtrans.2017.40
  33. Orellana L., Thorne A.H., Lema R. et al. Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci USA 2019;116(20):10009–18. doi: 10.1073/pnas.1821442116
  34. Binder Z.A., Thorne A.H., Bakas S. et al. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 2018;34(1):163–77.e7. doi: 10.1016/j.ccell.2018.06.006
  35. Raizer J.J., Giglio P., Hu J. et al. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neurooncol 2016;126(1):185–92. doi: 10.1007/s11060-015-1958-z
  36. Peereboom D.M., Ahluwalia M.S., Ye X. et al. NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol 2013;15(4):490–6. doi: 10.1093/neuonc/nos322
  37. Sathornsumetee S., Desjardins A., Vredenburgh J.J. et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 2010;12(12):1300–10. doi: 10.1093/neuonc/noq099
  38. Hegi M.E., Diserens A.C., Bady P. et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib – a phase II trial. Mol Cancer Ther 2011;10(6):1102–12. doi: 10.1158/1535-7163.MCT-11-0048
  39. Lassman A.B., Pugh S.L., Wang T.J.C. et al. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: a phase III randomized clinical trial. Neuro Oncol 2023;25(2):339–50. doi: 10.1093/neuonc/noac173
  40. Hasselbalch B., Lassen U., Hansen S. et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 2010;12(5):508–16. doi: 10.1093/neuonc/nop063
  41. McCrea H.J., Ivanidze J., O’Connor A. et al. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial. J Neurosurg Pediatr 2021;28(4):371–9. doi: 10.3171/2021.3.PEDS20738
  42. Westphal M., Heese O., Steinbach J.P. et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer 2015;51(4):522–32. doi: 10.1016/j.ejca.2014.12.019
  43. Solomón M.T., Selva J.C., Figueredo J. et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer 2013;13:299. doi: 10.1186/1471-2407-13-299
  44. Bagley S.J., Desai A.S., Linette G.P. et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol 2018;20(11):1429–38. doi: 10.1093/neuonc/noy032
  45. Lv S., Teugels E., Sadones J. et al. Correlation of EGFR, IDH1 and PTEN status with the outcome of patients with recurrent glioblastoma treated in a phase II clinical trial with the EGFR-blocking monoclonal antibody cetuximab. Int J Oncol 2012;41(3):1029–35. doi: 10.3892/ijo.2012.1539
  46. Daneshimehr F., Barabadi Z., Abdolahi S. et al. Angiogenesis and its targeting in glioblastoma with focus on clinical approaches. Cell J 2022;24(10):555–68. doi: 10.22074/cellj.2022.8154
  47. Westermark B. Platelet-derived growth factor in glioblastoma-driver or biomarker? Ups J Med Sci 2014;119(4):298–305. doi: 10.3109/03009734.2014.970304
  48. Lane R., Cilibrasi C., Chen J. et al. PDGF-R inhibition induces glioblastoma cell differentiation via DUSP1/p38MAPK signalling. Oncogene 2022;41(19):2749–63. doi: 10.1038/s41388-022-02294-x
  49. Boichuk S., Dunaev P., Galembikova A. et al. Fibroblast growth factor 2 (FGF2) activates vascular endothelial growth factor (VEGF) signaling in gastrointestinal stromal tumors (GIST): an autocrine mechanism contributing to imatinib mesylate (IM) resistance. Cancers (Basel) 2024;16(17):3103. doi: 10.3390/cancers16173103
  50. Boichuk S., Dunaev P., Skripova V. Unraveling the mechanisms of sensitivity to anti-FGF therapies in imatinib-resistant gastrointestinal stromal tumors (GIST) lacking secondary KIT mutations. Cancers (Basel) 2023;15(22):5354. doi: 10.3390/cancers15225354
  51. Boichuk S., Galembikova A., Mikheeva E. et al. Inhibition of FGF2-mediated signaling in GIST-promising approach for overcoming resistance to imatinib. Cancers (Basel) 2020;12(6):1674. doi: 10.3390/cancers12061674
  52. Boichuk S., Dunaev P., Galembikova A. et al. Inhibition of FGFR2-signaling attenuates a homology-mediated DNA repair in GIST and sensitizes them to DNA-topoisomerase II inhibitors. Int J Mol Sci 2020;21(1):352. doi: 10.3390/ijms21010352
  53. Boichuk S., Galembikova A., Dunaev P. et al. Targeting of FGF-signaling re-sensitizes gastrointestinal stromal tumors (GIST) to imatinib in vitro and in vivo. Molecules 2018;23(10):2643. doi: 10.3390/molecules23102643
  54. Morrison R.S., Yamaguchi F., Saya H. et al. Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol 1994;18(3):207–16. doi: 10.1007/BF01328955
  55. Loilome W., Joshi A.D., ap Rhys C.M. et al. Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol 2009;94(3):359–66. doi: 10.1007/s11060-009-9885-5
  56. Yamaguchi F., Saya H., Bruner J.M., Morrison R.S. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA 1994;91(2):484–8. doi: 10.1073/pnas.91.2.484
  57. Jimenez-Pascual A., Hale J.S., Kordowski A. et al. ADAMDEC1 maintains a growth factor signaling loop in cancer stem cells. Cancer Discov 2019;9(11):1574–89. doi: 10.1158/2159-8290.CD-18-1308
  58. Singh D., Chan J.M., Zoppoli P. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 2012;337(6099):1231–5. doi: 10.1126/science.1220834
  59. Jimenez-Pascual A., Siebzehnrubl F.A. Fibroblast growth factor receptor functions in glioblastoma. Cells 2019;8(7):715. doi: 10.3390/cells8070715
  60. Kowalski-Chauvel A., Gouaze-Andersson V., Baricault L. et al. Alpha6-integrin regulates FGFR1 expression through the ZEB1/YAP1 transcription complex in glioblastoma stem cells resulting in enhanced proliferation and stemness. Cancers (Basel) 2019;11(3):406. doi: 10.3390/cancers11030406
  61. Gouaze-Andersson V., Delmas C., Taurand M. et al. FGFR1 induces glioblastoma radioresistance through the PLCγ/Hif1α pathway. Cancer Res 2016;76(10):3036–44. doi: 10.1158/0008-5472.CAN-15-2058
  62. Brown N.F., Ng S.M., Brooks C. A phase II open label, randomised study of ipilimumab with temozolomide versus temozolomide alone after surgery and chemoradiotherapy in patients with recently diagnosed glioblastoma: the Ipi-Glio trial protocol. BMC Cancer 2020;20(1):198. doi: 10.1186/s12885-020-6624-y
  63. Carter T., Shaw H., Cohn-Brown D. et al. Ipilimumab and bevacizumab in glioblastoma. Clin Oncol (R Coll Radiol) 2016;28(10):622–6. doi: 10.1016/j.clon.2016.04.042
  64. Ellsworth S.G., Grossman S.A. Immunotherapeutic strategies for the treatment of glioma. NY: Academic Press, 2022. Pp. 1–17.
  65. Singh S., Barik D., Lawrie K. et al. Unveiling novel avenues in mTOR-targeted therapeutics: advancements in glioblastoma treatment. Int J Mol Sci 2023;24(19):14960. doi: 10.3390/ijms241914960
  66. Hashemi M., Etemad S., Rezaei S. et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: revisiting molecular interactions. Biomed Pharmacother 2023;158:114204. doi: 10.1016/j.biopha.2022.114204
  67. De Los Reyes Corrales T., Losada-Pérez M., Casas-Tintó S. JNK pathway in CNS pathologies. Int J Mol Sci 2021;22(8):3883. doi: 10.3390/ijms22083883
  68. Cirotti C., Contadini C., Barilà D. SRC Kinase in glioblastoma news from an old acquaintance. Cancers (Basel) 2020;12(6):1558. doi: 10.3390/cancers12061558
  69. Ou A., Ott M., Fang D., Heimberger A.B. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers (Basel) 2021;13(3):437. doi: 10.3390/cancers13030437
  70. Wu W., Klockow J.L., Zhang M. et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res 2021;171:105780. doi: 10.1016/j.phrs.2021.105780
  71. Sanmamed M.F., Chen L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 2014;20(4):256–61. doi: 10.1097/PPO.0000000000000061
  72. Sharpe A.H., Wherry E.J., Ahmed R., Freeman G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007;8(3):239–45. doi: 10.1038/ni1443
  73. Pesce S., Greppi M., Tabellini G. et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 2017;139(1):335–46.e3. doi: 10.1016/j.jaci.2016.04.025
  74. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. doi: 10.1038/nrc3239
  75. Ohaegbulam K.C., Assal A., Lazar-Molnar E. et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015;21(1):24–33. doi: 10.1016/j.molmed.2014.10.009
  76. Dong P., Xiong Y., Yue J. et al. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol 2018;8:386. doi: 10.3389/fonc.2018.00386
  77. Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020;10(3):727–42.
  78. Qian J., Wang C., Wang B. et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/ PD-L1 therapy. J Neuroinflammation 2018;15(1):290. doi: 10.1186/s12974-018-1330-2
  79. Parsa A.T., Waldron J.S., Panner A. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007;13(1):84–8. doi: 10.1038/nm1517
  80. Heiland D.H., Haaker G., Delev D. et al. Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. Oncotarget 2017;8(26):42214–25. doi: 10.18632/oncotarget.15031
  81. Peng H., Li Z., Fu J., Zhou R. Growth and differentiation factor 15 regulates PD-L1 expression in glioblastoma. Cancer Manag Res 2019;11:2653–61. doi: 10.2147/CMAR.S192095
  82. Shu C., Li Q. Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma. Crit Rev Oncol Hematol 2020;151:102965. doi: 10.1016/j.critrevonc.2020.102965
  83. Kline C., Liu S.J., Duriseti S. et al. Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: a single-institution experience. J Neurooncol 2018;140(3):629–38. doi: 10.1007/s11060-018-2991-5
  84. Reardon D.A., Omuro A., Brandes A.A. et al. OS10.3 Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol 2017;19(Suppl. 3):iii21. doi: 10.1093/neuonc/nox036.071
  85. Reardon D.A., Brandes A.A., Omuro A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 2020;6(7):1003–10. doi: 10.1001/jamaoncol.2020.1024
  86. Lowther D.E., Weinhold K., Reap E. et al. CBM-06: immune biomarker results from a trial of nivolumab ± ipilimumab in patients with recurrent glioblastoma: CheckMate-143. Neuro Oncol 2015;17(Suppl. 5):v70. doi: 10.1093/neuonc/nov211.06
  87. Omuro A., Vlahovic G., Baehring J. et al. OS07.3 nivolumab in combination with radiotherapy with or without temozolomide in patients with newly diagnosed glioblastoma: updated results from CheckMate 143. Neuro Oncol 2017;19(Suppl. 3):iii13. doi: 10.1093/neuonc/nox036.044
  88. Omuro A. Immune-checkpoint inhibitors for glioblastoma: what have we learned? Arq Neuropsiquiatr 2022;80(5 Suppl. 1): 266–9. doi: 10.1590/0004-282X-ANP-2022-S129
  89. Cloughesy T.F., Mochizuki A.Y., Orpilla J.R. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019;25(3):477–86. doi: 10.1038/s41591-018-0337-7
  90. Lombardi G., Barresi V., Indraccolo S. et al. Pembrolizumab activity in recurrent high-grade gliomas with partial or complete loss of mismatch repair protein expression: a monocentric, observational and prospective pilot study. Cancers (Basel) 2020;12(8):2283. doi: 10.3390/cancers12082283
  91. Nayak L., Molinaro A.M., Peters K. et al. Randomized phase II and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. Clin Cancer Res 2021;27(4):1048–57. doi: 10.1158/1078-0432.CCR-20-2500
  92. Zhao J., Chen A.X., Gartrell R.D. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 2019;25(3):462–9. doi: 10.1038/s41591-019-0349-y
  93. Nayak L., Standifer N., Dietrich J. et al. Circulating immune cell and outcome analysis from the phase II study of PD-L1 blockade with durvalumab for newly diagnosed and recurrent glioblastoma. Clin Cancer Res 2022;28(12):2567–78. doi: 10.1158/1078-0432.CCR-21-4064
  94. Jacques F.H., Nicholas G., Lorimer I.A.J. et al. Avelumab in newly diagnosed glioblastoma. Neurooncol Adv 2021;3(1):vdab118. doi: 10.1093/noajnl/vdab118
  95. Awada G., Ben Salama L., De Cremer J. et al. Axitinib plus avelumab in the treatment of recurrent glioblastoma: a stratified, open-label, single-center phase 2 clinical trial (GliAvAx). J Immunother Cancer 2020;8(2):e001146. doi: 10.1136/jitc-2020-001146
  96. Xu S., Tang L., Li X. et al. Immunotherapy for glioma: current management and future application. Cancer Lett 2020;476:1–12. doi: 10.1016/j.canlet.2020.02.002
  97. Buchbinder E.I., Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016;39(1):98–106. doi: 10.1097/COC.0000000000000239
  98. Fife B.T., Bluestone J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166–82. doi: 10.1111/j.1600-065X.2008.00662.x
  99. Takahashi T., Tagami T., Yamazaki S. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192(2):303–10. doi: 10.1084/jem.192.2.303
  100. Wing K., Onishi Y., Prieto-Martin P. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322(5899):271–5. doi: 10.1126/science.1160062
  101. Keir M.E., Butte M.J., Freeman G.J. et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331
  102. Guo Q., Shen S., Guan G. et al. Cancer cell intrinsic TIM-3 induces glioblastoma progression. iScience 2022;25(11):105329. doi: 10.1016/j.isci.2022.105329
  103. Harris-Bookman S., Mathios D., Martin A.M. et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer 2018;143(12):3201–8. doi: 10.1002/ijc.31661
  104. Yeo J., Ko M., Lee D.H. et al. TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals (Basel) 2021;14(3):200. doi: 10.3390/ph14030200
  105. Lucca L.E., Lerner B.A., Park C. et al. Differential expression of the T-cell inhibitor TIGIT in glioblastoma and MS. Neurol Neuroimmunol Neuroinflamm 2020;7(3):e712. doi: 10.1212/NXI.0000000000000712
  106. Dixon K.O., Schorer M., Nevin J. et al. Functional Anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol 2018;200(8):3000–7. doi: 10.4049/jimmunol.1700407
  107. Hung A.L., Maxwell R., Theodros D. et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 2018;7(8):e1466769. doi: 10.1080/2162402X.2018.1466769
  108. Wei S.C., Levine J.H., Cogdill A.P. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017;170(6):1120–33.e17. doi: 10.1016/j.cell.2017.07.024
  109. Borish L.C., Steinke J.W. Cytokines and chemokines. J Allergy Clin Immunol 2003;111(2 Suppl):S460–75. doi: 10.1067/mai.2003.108
  110. Silk A.W., Margolin K. Cytokine Therapy. Hematol Oncol Clin North Am 2019;33(2):261–74. doi: 10.1016/j.hoc.2018.12.004
  111. Yamanaka R. Glioma: immunotherapeutic approached. NY: Springer Science + Business Media, 2012.
  112. Liao W., Lin J.X., Leonard W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38(1):13–25. doi: 10.1016/j.immuni.2013.01.004
  113. Malek T.R., Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010;33(2):153–65. doi: 10.1016/j.immuni.2010.08.004
  114. Liao W., Lin J.X., Wang L. et al. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 2011;12(6):551–9. doi: 10.1038/ni.2030
  115. Colombo F., Barzon L., Franchin E. et al. Combined HSV-TK/ IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther 2005;12(10):835–48. doi: 10.1038/sj.cgt.7700851
  116. Okada H., Lieberman F.S., Walter K.A. et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 2007;5:67. doi: 10.1186/1479-5876-5-67
  117. Weber F., Asher A., Bucholz R. et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 2003;64(1–2):125–37. doi: 10.1007/BF02700027
  118. Mut M., Sherman J.H., Shaffrey M.E., Schiff D. Cintredekin besudotox in treatment of malignant glioma. Expert Opin Biol Ther 2008;8(6):805–12. doi: 10.1517/14712598.8.6.805
  119. Kunwar S., Prados M.D., Chang S.M. et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 2007;25(7):837–44. doi: 10.1200/JCO.2006.08.1117
  120. Vogelbaum M.A., Sampson J.H., Kunwar S. et al. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2007;61(5):1031–7; discussion 1037–8. doi: 10.1227/01.neu.0000303199.77370.9e
  121. Kunwar S., Chang S., Westphal M. et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 2010;12(8):871–81. doi: 10.1093/neuonc/nop054
  122. Pestka S., Krause C.D., Walter M.R. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x
  123. Bandurska K., Król I., Myga-Nowak M. Interferony: między strukturą a funkcją [Interferons: between structure and function]. Postepy Hig Med Dosw 2014;68:428–40. doi: 10.5604/17322693.1101229
  124. Исмаилова А.А., Розумбетов Р.Ж., Петрова Т.А. и др. Эффект интерферонов I типа: от молекул до организма. Журнал теоретической и клинической медицины 2018;3:25–31.
  125. Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004;75(2):163–89. doi: 10.1189/jlb.0603252
  126. Groves M.D., Puduvalli V.K., Gilbert M.R. et al. Two phase II trials of temozolomide with interferon-alpha2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. Br J Cancer 2009;101(4):615–20. doi: 10.1038/sj.bjc.6605189
  127. Wakabayashi T., Kayama T., Nishikawa R. et al. A multicenter phase I trial of combination therapy with interferon-β and temozolomide for high-grade gliomas (INTEGRA study): the final report. J Neurooncol 2011;104(2):573–7. doi: 10.1007/s11060-011-0529-1
  128. Kjellman C., Olofsson S.P., Hansson O. et al. Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 2000;89(3):251–8. doi: 10.1002/1097-0215(20000520)89:3<251::aid-ijc7>3.0.co;2-5
  129. Schlingensiepen K.H., Schlingensiepen R., Steinbrecher A. et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 2006;17(1–2):129–39. doi: 10.1016/j.cytogfr.2005.09.002
  130. Bogdahn U., Hau P., Stockhammer G. et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 2011;13(1):132–42. doi: 10.1093/neuonc/noq142
  131. Okamoto Y., Shimizu K., Tamura K. et al. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir (Wien) 1988;94(1–2): 47–52. doi: 10.1007/BF01406615
  132. Sankhla S.K., Nadkarni J.S., Bhagwati S.N. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J Neurooncol 1996;27(2):133–40. doi: 10.1007/BF00177476
  133. Yoshida S., Tanaka R., Takai N., Ono K. Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res 1988;48(17):5011–6.
  134. Swartz A.M., Batich K.A., Fecci P.E., Sampson J.H. Peptide vaccines for the treatment of glioblastoma. J Neurooncol 2015;123(3):433–40. doi: 10.1007/s11060-014-1676-y
  135. Sturm D., Bender S., Jones D.T. et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014;14(2):92–107. doi: 10.1038/nrc3655
  136. Elsamadicy A.A., Chongsathidkiet P., Desai R. et al. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther 2017;17(4):507–13. doi: 10.1080/14712598.2017.1299705
  137. Sampson J.H., Heimberger A.B., Archer G.E. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28(31):4722–9. doi: 10.1200/JCO.2010.28.6963
  138. Sampson J.H., Aldape K.D., Archer G.E. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 2011;13(3):324–33. doi: 10.1093/neuonc/noq157
  139. Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. doi: 10.1016/S1470-2045(17)30517-X
  140. Rampling R., Peoples S., Mulholland P.J. et al. A cancer research UK First time in human phase i trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res 2016;22(19):4776–85. doi: 10.1158/1078-0432.CCR-16-0506
  141. Johanns T.M., Garfinkle E.A.R., Miller K.E. et al. Integrating multisector molecular characterization into personalized peptide vaccine design for patients with newly diagnosed glioblastoma. Clin Cancer Res 2024;30(13):2729–42. doi: 10.1158/1078-0432.CCR-23-3077
  142. Schaller T.H., Sampson J.H. Advances and challenges: dendritic cell vaccination strategies for glioblastoma. Expert Rev Vaccines 2017;16(1):27–36. doi: 10.1080/14760584.2016.1218762
  143. Ardon H., Van Gool S., Lopes I.S. et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 2010;99(2):261–72. doi: 10.1007/s11060-010-0131-y
  144. Балдуева И.А., Новик А.В., Ефремова Н.А. и др. Эффективность лечения первичных опухолей центральной нервной системы аутологичной дендритно-клеточной вакциной CaTeVac. Вопросы онкологии 2022;приложение 3:157.
  145. Kikuchi T., Akasaki Y., Abe T. et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004;27(6):452–9. doi: 10.1097/00002371-200411000-00005
  146. Yu J.S., Liu G., Ying H. et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004;64(14):4973–9. doi: 10.1158/0008-5472.CAN-03-3505
  147. Кулева С.А., Борокшинова К.М., Балдуева И.А. и др. Опыт использования мультитаргетной противоопухолевой вакцины у ребенка с диффузной срединной глиомой головного мозга с альтерацией в гене H3 K27. Вопросы онкологии 2023;69(3):555–64. doi: 10.37469/0507-3758-2023-69-3-555-564
  148. Ridolfi L., Gurrieri L., Riva N. et al. First step results from a phase II study of a dendritic cell vaccine in glioblastoma patients (CombiG-vax). Front Immunol 2024;15:1404861. doi: 10.3389/fimmu.2024.1404861
  149. Yu J.X., Upadhaya S., Tatake R. et al. Cancer cell therapies: the clinical trial landscape. Nat Rev Drug Discov 2020;19(9):583–4. doi: 10.1038/d41573-020-00099-9
  150. Lin H., Cheng J., Mu W. et al. Advances in universal CAR-T cell therapy. Front Immunol 2021;12:744823. doi: 10.3389/fimmu.2021.744823
  151. Labanieh L., Majzner R.G., Mackall C.L. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018;2(6):377–91. doi: 10.1038/s41551-018-0235-9
  152. Kochenderfer J.N., Wilson W.H., Janik J.E. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116(20):4099–102. doi: 10.1182/blood-2010-04-281931
  153. Qazi M.A., Vora P., Venugopal C. et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2017;28(7):1448–56. doi: 10.1093/annonc/mdx169
  154. Hao C., Parney I.F., Roa W.H. et al. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 2002;103(2):171–8. doi: 10.1007/s004010100448
  155. Mirzaei R., Sarkar S., Yong V.W. T cell exhaustion in glioblastoma: intricacies of immune checkpoints. Trends Immunol 2017;38(2):104–15. PMID: 27964820. doi: 10.1016/j.it.2016.11.005
  156. Zhu C., Mustafa D., Zheng P.P. et al. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro Oncol 2017;19(5):648–59. doi: 10.1093/neuonc/now251
  157. Li L., Zhu X., Qian Y. et al. Chimeric antigen receptor T-cell therapy in glioblastoma: current and future. Front Immunol 2020;11:594271. doi: 10.3389/fimmu.2020.594271
  158. Karschnia P., Teske N., Thon N. et al. Chimeric antigen receptor T cells for glioblastoma: current concepts, challenges, and future perspectives. Neurology 2021;97(5):218–30. doi: 10.1212/WNL.0000000000012193
  159. Brown C.E., Alizadeh D., Starr R. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016;375(26):2561–9. doi: 10.1056/NEJMoa1610497
  160. Ahmed N., Brawley V., Hegde M. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 2017;3(8):1094–101. doi: 10.1001/jamaoncol.2017.0184
  161. O’Rourke D.M., Nasrallah M.P., Desai A. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9(399):eaaa0984. doi: 10.1126/scitranslmed.aaa0984
  162. Maggs L., Cattaneo G., Dal A.E. et al. CAR T cell-based immunotherapy for the treatment of glioblastoma. Front Neurosci 2021;15:662064. doi: 10.3389/fnins.2021.662064
  163. Keu K.V., Witney T.H., Yaghoubi S. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 2017;9(373):eaag2196. doi: 10.1126/scitranslmed.aag2196
  164. Bielamowicz K., Fousek K., Byrd T.T. et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol 2018;20(4):506–18. doi: 10.1093/neuonc/nox182
  165. Krenciute G., Prinzing B.L., Yi Z. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 2017;5(7):571–81. doi: 10.1158/2326-6066.CIR-16-0376
  166. Lamfers M.L., Grill J., Dirven C.M. et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002;62(20):5736–42.
  167. Lang F.F., Conrad C., Gomez-Manzano C. et al. Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 2018;36(14):1419–27. doi: 10.1200/JCO.2017.75.8219
  168. Chiocca E.A., Abbed K.M., Tatter S. et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10(5):958–66. doi: 10.1016/j.ymthe.2004.07.021
  169. Alessandrini F., Menotti L., Avitabile E. et al. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019;38(23):4467–79. doi: 10.1038/s41388-019-0737-2
  170. Markert J.M., Razdan S.N., Kuo H.C. et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014;22(5):1048–55. doi: 10.1038/mt.2014.22
  171. Desjardins A., Gromeier M., Herndon J.E. et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018;379(2):150–61. doi: 10.1056/NEJMoa1716435

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.