Иммунотерапия злокачественных глиом: современное состояние проблемы
- Авторы: Пичугин А.А.1,2, Ковязина Р.Р.3, Трондин А.А.4, Алексеев А.Г.1,2, Копнин П.Б.5, Гессель Т.В.1, Бойчук С.В.1,6
-
Учреждения:
- ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
- ГАУЗ «Межрегиональный клинико-диагностический центр»
- Университет герцога Куньшаня
- Клиника Сан-Карлос
- Научно-исследовательский институт канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
- ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
- Выпуск: Том 11, № 4 (2024)
- Страницы: 23-40
- Раздел: ОБЗОРНЫЕ СТАТЬИ
- Статья опубликована: 09.12.2024
- URL: https://umo.abvpress.ru/jour/article/view/727
- DOI: https://doi.org/10.17650/2313-805X-2024-11-4-23-40
- ID: 727
Цитировать
Полный текст
Аннотация
Злокачественные глиомы являются наиболее распространенными опухолями из клеток глиального ряда головного мозга у взрослых и характеризуются крайне неблагоприятным прогнозом. Терапия злокачественных глиом, как правило, включает максимально радикальное хирургическое удаление опухоли с последующим проведением лучевой терапии и/или химиотерапии.
В обзоре представлены основные клинико-морфологические и молекулярно-генетические характеристики глиом, их прогностическая значимость, а также роль в выборе тактики таргетной терапии с использованием соответствующих ингибиторов тирозинкиназ и моноклональных антител. Особое внимание уделяется современным аспектам в области иммунотерапии злокачественных глиом, таким как активация иммунных клеток и блокирование различных механизмов, используемых опухолью для уклонения от иммунной системы. Одним из наиболее изученных направлений иммунотерапии злокачественных новообразований является применение ингибиторов контрольных точек иммунного ответа. Данные препараты могут быть эффективны в лечении злокачественных глиом, в которых отмечается гиперэкспрессия молекул, оказывающих супрессорное действие на клетки иммунной системы. Еще одним перспективным направлением иммунотерапии является использование генетически модифицированных CAR-T-клеток (CAR – химерный антигенный рецептор), что подразумевает применение модифицированных иммунных клеток, способных распознавать и уничтожать опухолевые клетки. Помимо этого, к перспективным подходам иммунотерапии глиом относят цитокинотерапию и генную терапию, связанную c генным редактированием вирусов для производства онколитических вирусных вакцин. Разрабатываются вакцины, содержащие специфичные для опухолевых клеток антигены, которые могут стимулировать иммунную систему для их распознавания и последующего уничтожения.
Несмотря на перспективность иммунотерапии глиом, многие вышеперечисленные иммунотерапевтические подходы к лечению злокачественных глиом находятся на различных стадиях доклинических и клинических исследований, результаты некоторых из которых многообещающие.
Ключевые слова
Об авторах
А. А. Пичугин
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России; ГАУЗ «Межрегиональный клинико-диагностический центр»
Email: fake@neicon.ru
ORCID iD: 0000-0002-0134-1005
420012 Казань, ул. Бутлерова, 49
420101 Казань, ул. Карбышева, 12А
РоссияР. Р. Ковязина
Университет герцога Куньшаня
Email: fake@neicon.ru
ORCID iD: 0000-0002-6165-3668
215316 Куньшань, Цзянсу, Дьюк Авеню, 8
КитайА. А. Трондин
Клиника Сан-Карлос
Email: fake@neicon.ru
ORCID iD: 0000-0002-8046-2533
28040 Мадрид, Calle del Prof Martín Lagos, S/N, Moncloa – Aravaca
ИспанияА. Г. Алексеев
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России; ГАУЗ «Межрегиональный клинико-диагностический центр»
Email: fake@neicon.ru
ORCID iD: 0000-0003-1227-8918
420012 Казань, ул. Бутлерова, 49
420101 Казань, ул. Карбышева, 12А
РоссияП. Б. Копнин
Научно-исследовательский институт канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-2078-4274
115522 Москва, Каширское шоссе, 24
РоссияТ. В. Гессель
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0009-0003-4348-9141
420012 Казань, ул. Бутлерова, 49
РоссияС. В. Бойчук
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Автор, ответственный за переписку.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084
Сергей Васильевич Бойчук
420012 Казань, ул. Бутлерова, 49
125993 Москва, ул. Баррикадная, 2/1, стр. 1
РоссияСписок литературы
- Barh D., Carpi A., Verm M. et al. Cancer biomarkers: minimal and noninvasive early diagnosis and prognosis. NY: CRC Press, 2014.
- Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. doi: 10.1093/neuonc/noab106
- Кобяков Г.Л., Бекяшев А.Х., Голанов А.В. и др. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы. Злокачественные опухоли 2018;8(3):83–99. doi: 10.18027/2224-5057-2018-8-3s2-83-99
- Verhaak R.G., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98–110. doi: 10.1016/j.ccr.2009.12.020
- Ma R., Taphoorn M.J., Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry 2021;92(10):1103–11. doi: 10.1136/jnnp-2020-325334
- Генс Г.П., Саникович В.Д., Милейко В.А., Лебедева А.А. Глиобластома: молекулярно-генетический портрет и современные терапевтические стратегии лекарственного лечения. Успехи молекулярной онкологии 2021;8(3):60–76. doi: 10.17650/2313-805X-2021-8-3-60-76
- Rocha Pinheiro S.L., Lemos F.F.B., Marques H.S. et al. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023;14(4):138–59. doi: 10.5306/wjco.v14.i4.138
- Agosti E., Zeppieri M., De Maria L. et al. Glioblastoma immunotherapy: a systematic review of the present strategies and prospects for advancements. Int J Mol Sci 2023;24(20):15037. doi: 10.3390/ijms242015037
- Coxon A.T., Johanns T.M., Dunn G.P. An innovative immunotherapy vaccine with combination checkpoint blockade as a first line treatment for glioblastoma in the context of current treatments. Mo Med 2020;117(1):45–9.
- Коновалов Н.А., Асютин Д.С., Шайхаев Е.Г. и др. Молекулярные биомаркеры астроцитом головного и спинного мозга. Acta Naturae (русскоязычная версия) 2019;11;2(41):17–27.
- Кузнецова Н.С., Гурова С.В., Гончарова A.С. и др. Современные подходы к терапии глиобластомы. Южно-Российский онкологический журнал 2023;4(1):52–64. doi: 10.37748/2686-9039-2023-4-1-6
- Тимофеева С.В., Ситковская А.О., Новикова И.А. и др. Современные достижения CAT-T иммунотерапии для лечения глиобластомы. Медицинская иммунология 2021;23(3):483–96. doi: 10.15789/1563-0625-RAI-2111
- Yang H., Ye D., Guan K.L. et al. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012;18(20):5562–71. doi: 10.1158/1078-0432.CCR-12-1773
- Dang L., White D.W., Gross S. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462(7274):739–44. doi: 10.1038/nature08617
- Noushmehr H., Weisenberger D.J., Diefes K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17(5):510–22. doi: 10.1016/j.ccr.2010.03.017
- Yan H., Parsons D.W., Jin G. et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360(8):765–73. doi: 10.1056/NEJMoa0808710
- Huse J.T., Aldape K.D. The evolving role of molecular markers in the diagnosis and management of diffuse glioma. Clin Cancer Res 2014;20(22):5601–11. doi: 10.1158/1078-0432.CCR-14-0831
- Zou P., Xu H., Chen P. et al. IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS One 2013;8(7):e68782. doi: 10.1371/journal.pone.0068782
- Anderson M.D., Gilbert M.R. Clinical discussion of the management of anaplastic oligodendroglioma/oligoastrocytoma (both codeleted and nondeleted). J Natl Compr Canc Netw 2014;12(5):665–72. doi: 10.6004/jnccn.2014.0070
- Jiao Y., Killela P.J., Reitman Z.J. et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012;3(7):709–22. doi: 10.18632/oncotarget.588
- Karsy M., Guan J., Cohen A.L. et al. New molecular considerations for glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 2017;17(2):19. doi: 10.1007/s11910-017-0722-5
- England B., Huang T., Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol 2013;34(4):2063–74. doi: 10.1007/s13277-013-0871-3
- Kamran N., Alghamri M.S., Nunez F.J. et al. Current state and future prospects of immunotherapy for glioma. Immunotherapy 2018;10(4):317–39. doi: 10.2217/imt-2017-0122
- Marumoto T., Saya H. Molecular biology of glioma. Adv Exp Med Biol 2012;746:2–11. doi: 10.1007/978-1-4614-3146-6_1
- Network T.C. Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2013;494(7438):506. doi: 10.1038/nature11903
- Galbraith K., Snuderl M. Molecular pathology of gliomas. Surg pathol clin 2021;14(3):379–86. doi: 10.1016/j.path.2021.05.003
- Halperin E.C., Brady L.W., Wazer D.E. et al. Perez & Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins, 2013.
- Ostrom Q.T., Patil N., Cioffi G. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 2020;22(12 Suppl. 2): iv1–96. doi: 10.1093/neuonc/noaa200
- Maire C.L., Ligon K.L. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro Oncol 2014; 16(Suppl. 8):viii1–6. doi: 10.1093/neuonc/nou294
- Westphal M., Maire C.L., Lamszus K. EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs 2017;31(9):723–35. doi: 10.1007/s40263-017-0456-6
- Yamazaki H., Ohba Y., Tamaoki N. et al. A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors. Jpn J Cancer Res 1990;81(8):773–9. doi: 10.1111/j.1349-7006.1990.tb02644.x
- Pearson J.R.D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017;2:17040. doi: 10.1038/sigtrans.2017.40
- Orellana L., Thorne A.H., Lema R. et al. Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci USA 2019;116(20):10009–18. doi: 10.1073/pnas.1821442116
- Binder Z.A., Thorne A.H., Bakas S. et al. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 2018;34(1):163–77.e7. doi: 10.1016/j.ccell.2018.06.006
- Raizer J.J., Giglio P., Hu J. et al. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neurooncol 2016;126(1):185–92. doi: 10.1007/s11060-015-1958-z
- Peereboom D.M., Ahluwalia M.S., Ye X. et al. NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol 2013;15(4):490–6. doi: 10.1093/neuonc/nos322
- Sathornsumetee S., Desjardins A., Vredenburgh J.J. et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 2010;12(12):1300–10. doi: 10.1093/neuonc/noq099
- Hegi M.E., Diserens A.C., Bady P. et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib – a phase II trial. Mol Cancer Ther 2011;10(6):1102–12. doi: 10.1158/1535-7163.MCT-11-0048
- Lassman A.B., Pugh S.L., Wang T.J.C. et al. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: a phase III randomized clinical trial. Neuro Oncol 2023;25(2):339–50. doi: 10.1093/neuonc/noac173
- Hasselbalch B., Lassen U., Hansen S. et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 2010;12(5):508–16. doi: 10.1093/neuonc/nop063
- McCrea H.J., Ivanidze J., O’Connor A. et al. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial. J Neurosurg Pediatr 2021;28(4):371–9. doi: 10.3171/2021.3.PEDS20738
- Westphal M., Heese O., Steinbach J.P. et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer 2015;51(4):522–32. doi: 10.1016/j.ejca.2014.12.019
- Solomón M.T., Selva J.C., Figueredo J. et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer 2013;13:299. doi: 10.1186/1471-2407-13-299
- Bagley S.J., Desai A.S., Linette G.P. et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol 2018;20(11):1429–38. doi: 10.1093/neuonc/noy032
- Lv S., Teugels E., Sadones J. et al. Correlation of EGFR, IDH1 and PTEN status with the outcome of patients with recurrent glioblastoma treated in a phase II clinical trial with the EGFR-blocking monoclonal antibody cetuximab. Int J Oncol 2012;41(3):1029–35. doi: 10.3892/ijo.2012.1539
- Daneshimehr F., Barabadi Z., Abdolahi S. et al. Angiogenesis and its targeting in glioblastoma with focus on clinical approaches. Cell J 2022;24(10):555–68. doi: 10.22074/cellj.2022.8154
- Westermark B. Platelet-derived growth factor in glioblastoma-driver or biomarker? Ups J Med Sci 2014;119(4):298–305. doi: 10.3109/03009734.2014.970304
- Lane R., Cilibrasi C., Chen J. et al. PDGF-R inhibition induces glioblastoma cell differentiation via DUSP1/p38MAPK signalling. Oncogene 2022;41(19):2749–63. doi: 10.1038/s41388-022-02294-x
- Boichuk S., Dunaev P., Galembikova A. et al. Fibroblast growth factor 2 (FGF2) activates vascular endothelial growth factor (VEGF) signaling in gastrointestinal stromal tumors (GIST): an autocrine mechanism contributing to imatinib mesylate (IM) resistance. Cancers (Basel) 2024;16(17):3103. doi: 10.3390/cancers16173103
- Boichuk S., Dunaev P., Skripova V. Unraveling the mechanisms of sensitivity to anti-FGF therapies in imatinib-resistant gastrointestinal stromal tumors (GIST) lacking secondary KIT mutations. Cancers (Basel) 2023;15(22):5354. doi: 10.3390/cancers15225354
- Boichuk S., Galembikova A., Mikheeva E. et al. Inhibition of FGF2-mediated signaling in GIST-promising approach for overcoming resistance to imatinib. Cancers (Basel) 2020;12(6):1674. doi: 10.3390/cancers12061674
- Boichuk S., Dunaev P., Galembikova A. et al. Inhibition of FGFR2-signaling attenuates a homology-mediated DNA repair in GIST and sensitizes them to DNA-topoisomerase II inhibitors. Int J Mol Sci 2020;21(1):352. doi: 10.3390/ijms21010352
- Boichuk S., Galembikova A., Dunaev P. et al. Targeting of FGF-signaling re-sensitizes gastrointestinal stromal tumors (GIST) to imatinib in vitro and in vivo. Molecules 2018;23(10):2643. doi: 10.3390/molecules23102643
- Morrison R.S., Yamaguchi F., Saya H. et al. Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol 1994;18(3):207–16. doi: 10.1007/BF01328955
- Loilome W., Joshi A.D., ap Rhys C.M. et al. Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol 2009;94(3):359–66. doi: 10.1007/s11060-009-9885-5
- Yamaguchi F., Saya H., Bruner J.M., Morrison R.S. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA 1994;91(2):484–8. doi: 10.1073/pnas.91.2.484
- Jimenez-Pascual A., Hale J.S., Kordowski A. et al. ADAMDEC1 maintains a growth factor signaling loop in cancer stem cells. Cancer Discov 2019;9(11):1574–89. doi: 10.1158/2159-8290.CD-18-1308
- Singh D., Chan J.M., Zoppoli P. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 2012;337(6099):1231–5. doi: 10.1126/science.1220834
- Jimenez-Pascual A., Siebzehnrubl F.A. Fibroblast growth factor receptor functions in glioblastoma. Cells 2019;8(7):715. doi: 10.3390/cells8070715
- Kowalski-Chauvel A., Gouaze-Andersson V., Baricault L. et al. Alpha6-integrin regulates FGFR1 expression through the ZEB1/YAP1 transcription complex in glioblastoma stem cells resulting in enhanced proliferation and stemness. Cancers (Basel) 2019;11(3):406. doi: 10.3390/cancers11030406
- Gouaze-Andersson V., Delmas C., Taurand M. et al. FGFR1 induces glioblastoma radioresistance through the PLCγ/Hif1α pathway. Cancer Res 2016;76(10):3036–44. doi: 10.1158/0008-5472.CAN-15-2058
- Brown N.F., Ng S.M., Brooks C. A phase II open label, randomised study of ipilimumab with temozolomide versus temozolomide alone after surgery and chemoradiotherapy in patients with recently diagnosed glioblastoma: the Ipi-Glio trial protocol. BMC Cancer 2020;20(1):198. doi: 10.1186/s12885-020-6624-y
- Carter T., Shaw H., Cohn-Brown D. et al. Ipilimumab and bevacizumab in glioblastoma. Clin Oncol (R Coll Radiol) 2016;28(10):622–6. doi: 10.1016/j.clon.2016.04.042
- Ellsworth S.G., Grossman S.A. Immunotherapeutic strategies for the treatment of glioma. NY: Academic Press, 2022. Pp. 1–17.
- Singh S., Barik D., Lawrie K. et al. Unveiling novel avenues in mTOR-targeted therapeutics: advancements in glioblastoma treatment. Int J Mol Sci 2023;24(19):14960. doi: 10.3390/ijms241914960
- Hashemi M., Etemad S., Rezaei S. et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: revisiting molecular interactions. Biomed Pharmacother 2023;158:114204. doi: 10.1016/j.biopha.2022.114204
- De Los Reyes Corrales T., Losada-Pérez M., Casas-Tintó S. JNK pathway in CNS pathologies. Int J Mol Sci 2021;22(8):3883. doi: 10.3390/ijms22083883
- Cirotti C., Contadini C., Barilà D. SRC Kinase in glioblastoma news from an old acquaintance. Cancers (Basel) 2020;12(6):1558. doi: 10.3390/cancers12061558
- Ou A., Ott M., Fang D., Heimberger A.B. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers (Basel) 2021;13(3):437. doi: 10.3390/cancers13030437
- Wu W., Klockow J.L., Zhang M. et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res 2021;171:105780. doi: 10.1016/j.phrs.2021.105780
- Sanmamed M.F., Chen L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 2014;20(4):256–61. doi: 10.1097/PPO.0000000000000061
- Sharpe A.H., Wherry E.J., Ahmed R., Freeman G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007;8(3):239–45. doi: 10.1038/ni1443
- Pesce S., Greppi M., Tabellini G. et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 2017;139(1):335–46.e3. doi: 10.1016/j.jaci.2016.04.025
- Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. doi: 10.1038/nrc3239
- Ohaegbulam K.C., Assal A., Lazar-Molnar E. et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015;21(1):24–33. doi: 10.1016/j.molmed.2014.10.009
- Dong P., Xiong Y., Yue J. et al. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol 2018;8:386. doi: 10.3389/fonc.2018.00386
- Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020;10(3):727–42.
- Qian J., Wang C., Wang B. et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/ PD-L1 therapy. J Neuroinflammation 2018;15(1):290. doi: 10.1186/s12974-018-1330-2
- Parsa A.T., Waldron J.S., Panner A. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007;13(1):84–8. doi: 10.1038/nm1517
- Heiland D.H., Haaker G., Delev D. et al. Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. Oncotarget 2017;8(26):42214–25. doi: 10.18632/oncotarget.15031
- Peng H., Li Z., Fu J., Zhou R. Growth and differentiation factor 15 regulates PD-L1 expression in glioblastoma. Cancer Manag Res 2019;11:2653–61. doi: 10.2147/CMAR.S192095
- Shu C., Li Q. Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma. Crit Rev Oncol Hematol 2020;151:102965. doi: 10.1016/j.critrevonc.2020.102965
- Kline C., Liu S.J., Duriseti S. et al. Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: a single-institution experience. J Neurooncol 2018;140(3):629–38. doi: 10.1007/s11060-018-2991-5
- Reardon D.A., Omuro A., Brandes A.A. et al. OS10.3 Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol 2017;19(Suppl. 3):iii21. doi: 10.1093/neuonc/nox036.071
- Reardon D.A., Brandes A.A., Omuro A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 2020;6(7):1003–10. doi: 10.1001/jamaoncol.2020.1024
- Lowther D.E., Weinhold K., Reap E. et al. CBM-06: immune biomarker results from a trial of nivolumab ± ipilimumab in patients with recurrent glioblastoma: CheckMate-143. Neuro Oncol 2015;17(Suppl. 5):v70. doi: 10.1093/neuonc/nov211.06
- Omuro A., Vlahovic G., Baehring J. et al. OS07.3 nivolumab in combination with radiotherapy with or without temozolomide in patients with newly diagnosed glioblastoma: updated results from CheckMate 143. Neuro Oncol 2017;19(Suppl. 3):iii13. doi: 10.1093/neuonc/nox036.044
- Omuro A. Immune-checkpoint inhibitors for glioblastoma: what have we learned? Arq Neuropsiquiatr 2022;80(5 Suppl. 1): 266–9. doi: 10.1590/0004-282X-ANP-2022-S129
- Cloughesy T.F., Mochizuki A.Y., Orpilla J.R. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019;25(3):477–86. doi: 10.1038/s41591-018-0337-7
- Lombardi G., Barresi V., Indraccolo S. et al. Pembrolizumab activity in recurrent high-grade gliomas with partial or complete loss of mismatch repair protein expression: a monocentric, observational and prospective pilot study. Cancers (Basel) 2020;12(8):2283. doi: 10.3390/cancers12082283
- Nayak L., Molinaro A.M., Peters K. et al. Randomized phase II and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. Clin Cancer Res 2021;27(4):1048–57. doi: 10.1158/1078-0432.CCR-20-2500
- Zhao J., Chen A.X., Gartrell R.D. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 2019;25(3):462–9. doi: 10.1038/s41591-019-0349-y
- Nayak L., Standifer N., Dietrich J. et al. Circulating immune cell and outcome analysis from the phase II study of PD-L1 blockade with durvalumab for newly diagnosed and recurrent glioblastoma. Clin Cancer Res 2022;28(12):2567–78. doi: 10.1158/1078-0432.CCR-21-4064
- Jacques F.H., Nicholas G., Lorimer I.A.J. et al. Avelumab in newly diagnosed glioblastoma. Neurooncol Adv 2021;3(1):vdab118. doi: 10.1093/noajnl/vdab118
- Awada G., Ben Salama L., De Cremer J. et al. Axitinib plus avelumab in the treatment of recurrent glioblastoma: a stratified, open-label, single-center phase 2 clinical trial (GliAvAx). J Immunother Cancer 2020;8(2):e001146. doi: 10.1136/jitc-2020-001146
- Xu S., Tang L., Li X. et al. Immunotherapy for glioma: current management and future application. Cancer Lett 2020;476:1–12. doi: 10.1016/j.canlet.2020.02.002
- Buchbinder E.I., Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016;39(1):98–106. doi: 10.1097/COC.0000000000000239
- Fife B.T., Bluestone J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166–82. doi: 10.1111/j.1600-065X.2008.00662.x
- Takahashi T., Tagami T., Yamazaki S. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192(2):303–10. doi: 10.1084/jem.192.2.303
- Wing K., Onishi Y., Prieto-Martin P. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322(5899):271–5. doi: 10.1126/science.1160062
- Keir M.E., Butte M.J., Freeman G.J. et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331
- Guo Q., Shen S., Guan G. et al. Cancer cell intrinsic TIM-3 induces glioblastoma progression. iScience 2022;25(11):105329. doi: 10.1016/j.isci.2022.105329
- Harris-Bookman S., Mathios D., Martin A.M. et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer 2018;143(12):3201–8. doi: 10.1002/ijc.31661
- Yeo J., Ko M., Lee D.H. et al. TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals (Basel) 2021;14(3):200. doi: 10.3390/ph14030200
- Lucca L.E., Lerner B.A., Park C. et al. Differential expression of the T-cell inhibitor TIGIT in glioblastoma and MS. Neurol Neuroimmunol Neuroinflamm 2020;7(3):e712. doi: 10.1212/NXI.0000000000000712
- Dixon K.O., Schorer M., Nevin J. et al. Functional Anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol 2018;200(8):3000–7. doi: 10.4049/jimmunol.1700407
- Hung A.L., Maxwell R., Theodros D. et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 2018;7(8):e1466769. doi: 10.1080/2162402X.2018.1466769
- Wei S.C., Levine J.H., Cogdill A.P. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017;170(6):1120–33.e17. doi: 10.1016/j.cell.2017.07.024
- Borish L.C., Steinke J.W. Cytokines and chemokines. J Allergy Clin Immunol 2003;111(2 Suppl):S460–75. doi: 10.1067/mai.2003.108
- Silk A.W., Margolin K. Cytokine Therapy. Hematol Oncol Clin North Am 2019;33(2):261–74. doi: 10.1016/j.hoc.2018.12.004
- Yamanaka R. Glioma: immunotherapeutic approached. NY: Springer Science + Business Media, 2012.
- Liao W., Lin J.X., Leonard W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38(1):13–25. doi: 10.1016/j.immuni.2013.01.004
- Malek T.R., Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010;33(2):153–65. doi: 10.1016/j.immuni.2010.08.004
- Liao W., Lin J.X., Wang L. et al. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 2011;12(6):551–9. doi: 10.1038/ni.2030
- Colombo F., Barzon L., Franchin E. et al. Combined HSV-TK/ IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther 2005;12(10):835–48. doi: 10.1038/sj.cgt.7700851
- Okada H., Lieberman F.S., Walter K.A. et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 2007;5:67. doi: 10.1186/1479-5876-5-67
- Weber F., Asher A., Bucholz R. et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 2003;64(1–2):125–37. doi: 10.1007/BF02700027
- Mut M., Sherman J.H., Shaffrey M.E., Schiff D. Cintredekin besudotox in treatment of malignant glioma. Expert Opin Biol Ther 2008;8(6):805–12. doi: 10.1517/14712598.8.6.805
- Kunwar S., Prados M.D., Chang S.M. et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 2007;25(7):837–44. doi: 10.1200/JCO.2006.08.1117
- Vogelbaum M.A., Sampson J.H., Kunwar S. et al. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2007;61(5):1031–7; discussion 1037–8. doi: 10.1227/01.neu.0000303199.77370.9e
- Kunwar S., Chang S., Westphal M. et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 2010;12(8):871–81. doi: 10.1093/neuonc/nop054
- Pestka S., Krause C.D., Walter M.R. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x
- Bandurska K., Król I., Myga-Nowak M. Interferony: między strukturą a funkcją [Interferons: between structure and function]. Postepy Hig Med Dosw 2014;68:428–40. doi: 10.5604/17322693.1101229
- Исмаилова А.А., Розумбетов Р.Ж., Петрова Т.А. и др. Эффект интерферонов I типа: от молекул до организма. Журнал теоретической и клинической медицины 2018;3:25–31.
- Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004;75(2):163–89. doi: 10.1189/jlb.0603252
- Groves M.D., Puduvalli V.K., Gilbert M.R. et al. Two phase II trials of temozolomide with interferon-alpha2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. Br J Cancer 2009;101(4):615–20. doi: 10.1038/sj.bjc.6605189
- Wakabayashi T., Kayama T., Nishikawa R. et al. A multicenter phase I trial of combination therapy with interferon-β and temozolomide for high-grade gliomas (INTEGRA study): the final report. J Neurooncol 2011;104(2):573–7. doi: 10.1007/s11060-011-0529-1
- Kjellman C., Olofsson S.P., Hansson O. et al. Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 2000;89(3):251–8. doi: 10.1002/1097-0215(20000520)89:3<251::aid-ijc7>3.0.co;2-5
- Schlingensiepen K.H., Schlingensiepen R., Steinbrecher A. et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 2006;17(1–2):129–39. doi: 10.1016/j.cytogfr.2005.09.002
- Bogdahn U., Hau P., Stockhammer G. et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 2011;13(1):132–42. doi: 10.1093/neuonc/noq142
- Okamoto Y., Shimizu K., Tamura K. et al. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir (Wien) 1988;94(1–2): 47–52. doi: 10.1007/BF01406615
- Sankhla S.K., Nadkarni J.S., Bhagwati S.N. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J Neurooncol 1996;27(2):133–40. doi: 10.1007/BF00177476
- Yoshida S., Tanaka R., Takai N., Ono K. Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res 1988;48(17):5011–6.
- Swartz A.M., Batich K.A., Fecci P.E., Sampson J.H. Peptide vaccines for the treatment of glioblastoma. J Neurooncol 2015;123(3):433–40. doi: 10.1007/s11060-014-1676-y
- Sturm D., Bender S., Jones D.T. et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014;14(2):92–107. doi: 10.1038/nrc3655
- Elsamadicy A.A., Chongsathidkiet P., Desai R. et al. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther 2017;17(4):507–13. doi: 10.1080/14712598.2017.1299705
- Sampson J.H., Heimberger A.B., Archer G.E. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28(31):4722–9. doi: 10.1200/JCO.2010.28.6963
- Sampson J.H., Aldape K.D., Archer G.E. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 2011;13(3):324–33. doi: 10.1093/neuonc/noq157
- Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. doi: 10.1016/S1470-2045(17)30517-X
- Rampling R., Peoples S., Mulholland P.J. et al. A cancer research UK First time in human phase i trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res 2016;22(19):4776–85. doi: 10.1158/1078-0432.CCR-16-0506
- Johanns T.M., Garfinkle E.A.R., Miller K.E. et al. Integrating multisector molecular characterization into personalized peptide vaccine design for patients with newly diagnosed glioblastoma. Clin Cancer Res 2024;30(13):2729–42. doi: 10.1158/1078-0432.CCR-23-3077
- Schaller T.H., Sampson J.H. Advances and challenges: dendritic cell vaccination strategies for glioblastoma. Expert Rev Vaccines 2017;16(1):27–36. doi: 10.1080/14760584.2016.1218762
- Ardon H., Van Gool S., Lopes I.S. et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 2010;99(2):261–72. doi: 10.1007/s11060-010-0131-y
- Балдуева И.А., Новик А.В., Ефремова Н.А. и др. Эффективность лечения первичных опухолей центральной нервной системы аутологичной дендритно-клеточной вакциной CaTeVac. Вопросы онкологии 2022;приложение 3:157.
- Kikuchi T., Akasaki Y., Abe T. et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004;27(6):452–9. doi: 10.1097/00002371-200411000-00005
- Yu J.S., Liu G., Ying H. et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004;64(14):4973–9. doi: 10.1158/0008-5472.CAN-03-3505
- Кулева С.А., Борокшинова К.М., Балдуева И.А. и др. Опыт использования мультитаргетной противоопухолевой вакцины у ребенка с диффузной срединной глиомой головного мозга с альтерацией в гене H3 K27. Вопросы онкологии 2023;69(3):555–64. doi: 10.37469/0507-3758-2023-69-3-555-564
- Ridolfi L., Gurrieri L., Riva N. et al. First step results from a phase II study of a dendritic cell vaccine in glioblastoma patients (CombiG-vax). Front Immunol 2024;15:1404861. doi: 10.3389/fimmu.2024.1404861
- Yu J.X., Upadhaya S., Tatake R. et al. Cancer cell therapies: the clinical trial landscape. Nat Rev Drug Discov 2020;19(9):583–4. doi: 10.1038/d41573-020-00099-9
- Lin H., Cheng J., Mu W. et al. Advances in universal CAR-T cell therapy. Front Immunol 2021;12:744823. doi: 10.3389/fimmu.2021.744823
- Labanieh L., Majzner R.G., Mackall C.L. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018;2(6):377–91. doi: 10.1038/s41551-018-0235-9
- Kochenderfer J.N., Wilson W.H., Janik J.E. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116(20):4099–102. doi: 10.1182/blood-2010-04-281931
- Qazi M.A., Vora P., Venugopal C. et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2017;28(7):1448–56. doi: 10.1093/annonc/mdx169
- Hao C., Parney I.F., Roa W.H. et al. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 2002;103(2):171–8. doi: 10.1007/s004010100448
- Mirzaei R., Sarkar S., Yong V.W. T cell exhaustion in glioblastoma: intricacies of immune checkpoints. Trends Immunol 2017;38(2):104–15. PMID: 27964820. doi: 10.1016/j.it.2016.11.005
- Zhu C., Mustafa D., Zheng P.P. et al. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro Oncol 2017;19(5):648–59. doi: 10.1093/neuonc/now251
- Li L., Zhu X., Qian Y. et al. Chimeric antigen receptor T-cell therapy in glioblastoma: current and future. Front Immunol 2020;11:594271. doi: 10.3389/fimmu.2020.594271
- Karschnia P., Teske N., Thon N. et al. Chimeric antigen receptor T cells for glioblastoma: current concepts, challenges, and future perspectives. Neurology 2021;97(5):218–30. doi: 10.1212/WNL.0000000000012193
- Brown C.E., Alizadeh D., Starr R. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016;375(26):2561–9. doi: 10.1056/NEJMoa1610497
- Ahmed N., Brawley V., Hegde M. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 2017;3(8):1094–101. doi: 10.1001/jamaoncol.2017.0184
- O’Rourke D.M., Nasrallah M.P., Desai A. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9(399):eaaa0984. doi: 10.1126/scitranslmed.aaa0984
- Maggs L., Cattaneo G., Dal A.E. et al. CAR T cell-based immunotherapy for the treatment of glioblastoma. Front Neurosci 2021;15:662064. doi: 10.3389/fnins.2021.662064
- Keu K.V., Witney T.H., Yaghoubi S. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 2017;9(373):eaag2196. doi: 10.1126/scitranslmed.aag2196
- Bielamowicz K., Fousek K., Byrd T.T. et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol 2018;20(4):506–18. doi: 10.1093/neuonc/nox182
- Krenciute G., Prinzing B.L., Yi Z. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 2017;5(7):571–81. doi: 10.1158/2326-6066.CIR-16-0376
- Lamfers M.L., Grill J., Dirven C.M. et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002;62(20):5736–42.
- Lang F.F., Conrad C., Gomez-Manzano C. et al. Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 2018;36(14):1419–27. doi: 10.1200/JCO.2017.75.8219
- Chiocca E.A., Abbed K.M., Tatter S. et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10(5):958–66. doi: 10.1016/j.ymthe.2004.07.021
- Alessandrini F., Menotti L., Avitabile E. et al. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019;38(23):4467–79. doi: 10.1038/s41388-019-0737-2
- Markert J.M., Razdan S.N., Kuo H.C. et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014;22(5):1048–55. doi: 10.1038/mt.2014.22
- Desjardins A., Gromeier M., Herndon J.E. et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018;379(2):150–61. doi: 10.1056/NEJMoa1716435
Дополнительные файлы


