Изоформы актина и неопл астическая трансформация

Обложка

Цитировать

Полный текст

Об авторах

В. Б. Дугина

Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

Email: fake@neicon.ru
Россия, 119992 Москва, Ленинские горы, 1, стр. 40 Россия

Г. С. Шагиева

Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

Email: fake@neicon.ru
Россия, 119992 Москва, Ленинские горы, 1, стр. 40 Россия

Н. В. Хромова

Научно-исследовательский институт канцерогенеза ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России

Email: fake@neicon.ru
Россия, 115478 Москва, Каширское шоссе, 24 Россия

П. Б. Копнин

Научно-исследовательский институт канцерогенеза ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России

Автор, ответственный за переписку.
Email: pbkopnin@mail.ru
Россия, 115478 Москва, Каширское шоссе, 24 Россия

Список литературы

  1. Vandekerckhove J., Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 1978;126(4):783–802. doi: 10.1016/0022-2836(78)90020-7.
  2. Kabsch W., Vandekerckhove J. Structure and function of actin. Annu Rev Biophys Biomol Struct 1992;21:49–76. doi: 10.1146/annurev.bb.21.060192.000405.
  3. Gunning P., Ponte P., Kedes L. et al. Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc Natl Acad Sci U S A 1984;81(6):1813–7.
  4. Hightower R.C., Meagher R.B. The molecular evolution of actin. Genetics 1986;114:315–32.
  5. 5Garrels J.I., Gibson W. Identification and characterization of multiple forms of actin. Cell 1976;9(4 Pt 2):793–805.
  6. Rubenstein P.A. The functional importance of multiple actin isoforms. Bioessays 1990;12:309–15. doi: 10.1002/bies.950120702.
  7. Schutt C.E., Myslik J.C., Rozycki M.D. et al. The structure of crystalline profilinbeta- actin. Nature 1993;365(6449):810–6. doi: 10.1038/365810a0.
  8. Sheterline P., Clayton J., Sparrow J. Actin. Protein Profile 1995;2(1):1–103.
  9. Müller M., Diensthuber R.P., Chizhov I. et al. Distinct functional interactions between actin isoforms and nonsarcomeric myosins. PLoS One 2013;8(7):e70636. doi: 10.1371/journal.pone.0070636.
  10. Larsson H., Lindberg U. The effect of divalent cations on the interaction between calf spleen profilin and different actins. Biochim Biophys Acta 1988;953(1):95–105.
  11. Ohshima S., Abe H., Obinata T. Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms. J Biochem 1989;105(6):855–7.
  12. Weber A., Nachmias V.T., Pennise C.R. et al. Interaction of thymosin beta 4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochemistry 1992;31(27): 6179–85.
  13. Namba Y., Ito M., Zu Y. et al. Human T cell L-plastin bundles actin filaments in a calcium- dependent manner. J Biochem 1992;112(4):503–7.
  14. Shuster C.B., Herman I.M. Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity. J Cell Biol 1995;128(5):837–48.
  15. Yao X., Cheng L., Forte J.G. Biochemical characterization of ezrin-actin interaction. J Biol Chem 1996;271(12):7224–9.
  16. Shuster C.B., Lin A.Y., Nayak R., Herman I.M. Beta cap73: a novel beta actin-specific binding protein. Cell Motil Cytoskeleton 1996;35(3):175–87. doi: 10.1002/(SICI)1097-0169(1996)35:3<175::AID-CM1>3.0.CO;2-8.
  17. Winder S.J., Hemmings L., Maciver S.K. et al. Utrophin actin binding domain: analysis of actin binding and cellular targeting. J Cell Sci 1995;108(Pt 1):63–71.
  18. Tzima E., Trotter P.J., Orchard M.A., Walker J.H. Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin. Eur J Biochem 2000;267(15):4720–30.
  19. Gunning P., Weinberger R., Jeffrey P., Hardeman E. Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 1998;14:339–72. doi: 10.1146/annurev.cellbio.14.1.339.
  20. Manstein D.J., Mulvihill D.P. Tropomyosin-mediated regulation of cytoplasmic myosins. Traffic 2016;17(8):872–7. doi: 10.1111/tra.12399.
  21. von der Ecken J., Heissler S.M., Pathan-Chhatbar S. et al. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 2016;534(7609):724–8. doi: 10.1038/nature18295.
  22. Gunning P., Mohun T., Ng S.Y. et al. Evolution of the human sarcomeric-actin genes: evidence for units of selection within the 3’ untranslated regions of the mRNAs. J Mol Evol 1984;20(3–4): 202–14.
  23. Yaffe D., Nudel U., Mayer Y., Neuman S. Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res 1985;13(10):3723–37.
  24. Treisman R., Alberts A.S., Sahai E. Regulation of SRF activity by Rho family GTPases. Cold Spring Harb Symp Quant Biol 1998;63:643–51.
  25. Posern G., Treisman R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 2006;16(11):588–96. doi: 10.1016/j.tcb.2006.09.008.
  26. Singer R.H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol 1992;4(1):15–9.
  27. Gunning P., Hardeman E., Wade R. et al. Differential patterns of transcript accumulation during human myogenesis. Mol Cell Biol 1987;7(11):4100–14.
  28. Latham V.M., Kislauskis E.H., Singer R.H., Ross A.F. Beta-actin mRNA localization is regulated by signal transduction mechanisms. J Cell Biol 1994;126(5):1211–9.
  29. Oleynikov Y., Singer R.H. Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol 2003;13(3):199–207.
  30. Kislauskis E.H., Li Z., Singer R.H., Taneja K.L. Isoform-specific 3’-untranslated sequences sort alphacardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol 1993;123(1):165–72.
  31. Lawrence J.B., Singer R.H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 1986;45: 407–15.
  32. Shestakova E.A., Singer R.H., Condeelis J. The physiological significance of betaactin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci U S A 2001;98(13):7045–50. doi: 10.1073/pnas.121146098.
  33. Ross A.F., Oleynikov Y., Kislauskis E.H. et al. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol 1997;17(4):2158–65.
  34. Kislauskis E.H., Zhu X., Singer R.H. beta-Actin messenger RNA localization and protein synthesis augment cell motility. J Cell Biol 1997;136(6): 1263–70.
  35. Wang W., Goswami S., Lapidus K. et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2004;64(23):8585–94. doi: 10.1158/0008-5472.CAN-04-1136.
  36. Condeelis J., Singer R.H. How and why does beta-actin mRNA target? Biol cell 2005;97(1):97–110. doi: 10.1042/BC20040063.
  37. Katz Z.B., Wells A.L., Park H.Y. et al. β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev 2012;26(17):1885–90. doi: 10.1101/gad.190413.112.
  38. Hill M.A., Gunning P. Beta and gamma actin mRNAs are differentially located within myoblasts. J Cell Biol 1993;122(4):825–32.
  39. Hannan A.J., Gunning P., Jeffrey P.L., Weinberger R.P. Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 1998;11(5–6):289–304. doi: 10.1006/mcne.1998.0693.
  40. Karakozova M., Kozak M., Wong C.C. et al. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 2006;313(5784):192–6. doi: 10.1126/science.1129344.
  41. Kashina A.S. Differential arginylation of actin isoforms: the mystery of the actin N- terminus. Trends Cell Biol 2006;16(12):610–5. doi: 10.1016/j.tcb.2006.10.001.
  42. Wong C.C., Xu T., Rai R. et al. Global analysis of posttranslational protein arginylation. PLoS Biol 2007;5(10):e258. doi: 10.1371/journal.pbio.0050258.
  43. Zhang F., Saha S., Shabalina S.A., Kashina A. Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 2010;329(5998):1534–7. doi: 10.1126/science.1191701.
  44. Otey C.A., Kalnoski M.H., Bulinski J.C. Identification and quantification of actin isoforms in vertebrate cells and tissues. J Cell Biochem 1987;34(2):113–24. doi: 10.1002/jcb.240340205.
  45. Chaponnier C., Gabbiani G. Pathological situations characterized by altered actin isoform expression. J Pathol 2004;204(4):386–95. doi: 10.1002/path.1635.
  46. Lambrechts A., Van Troys M., Ampe C. The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 2004;36(10):1890–909. doi: 10.1016/j.biocel.2004.01.024.
  47. Shawlot W., Deng J.M., Fohn L.E., Behringer R.R. Restricted betagalactosidase expression of a hygromycinlacZ gene targeted to the beta-actin locus and embryonic lethality of beta-actin mutant mice. Transgenic Res 1998;7(2):95–103.
  48. Perrin B.J., Ervasti J.M. The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 2010;67(10):630–4. doi: 10.1002/cm.20475.
  49. Belyantseva I.A., Perrin B.J., Sonnemann K.J. et al. Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci USA 2009;106:9703–8. doi: 10.1073/pnas.0900221106.
  50. Bunnell T.M., Ervasti J.M. Delayed embryonic development and impaired cell growth and survival in ACTG1 null mice. Cytoskeleton (Hoboken) 2010;67(9):564–72. doi: 10.1002/cm.20467.
  51. Dugina V., Zwaenepoel I., Gabbiani G. et al. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci 2009;122(Pt 16): 2980–8. doi: 10.1242/jcs.041970.
  52. Franke W.W., Stehr S., Stumpp S. et al. Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells. Differentiation 1996;60(4):245–50. doi: 10.1046/j.1432-0436.1996.6040245.x.
  53. Шагиева Г.С., Домнина Л.В., Чипышева Т.А. и др. Реорганизация изоформ актина и адгезионных контактов при эпителиально-мезенхимальном переходе в клетках цервикальных карцином. Биохимия 2012;77(11):1513–25. [Shagieva G.S., Domnina L.V., Chipysheva T.A. et al. Actin isoforms and reorganization of adhesion junctions in epithelial- to-mesenchymal transition of cervical carcinoma cells. Biokhimiya = Biochemistry 2012;77(11):1513–25. (In Russ.)].
  54. Baranwal S., Naydenov N.G., Harris G. et al. Nonredundant roles of cytoplasmic β- and γ- actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell 2012;23(18):3542– 53. doi: 10.1091/mbc.E12-02-0162.
  55. Дугина В.Б., Чипышева Т.А., Ермилова В.Д. и др. Распределение изоформ актина в клетках нормальной, диспластической и опухолевой ткани молочной железы. Архив патологии 2008;(70):28–31. [Dugina V.B., Chipysheva T.A., Ermilova V.D. et al. Distribution of actin isoforms in normal, dysplastic and cancer breast cells. Arkhiv patologii = Pathology Archive 2008;70(2):28–31. (In Russ.)].
  56. Dugina V., Arnoldi R., Janmey P.A. Chaponnier C. Actin. In: The Cytoskeleton and Human Disease. Ed. by M. Cavallaris. Humana Press- Springer, 2012. Pp. 3–28.
  57. Brockmann C., Huarte J., Dugina V. et al. Beta- and gamma-cytoplasmic actins are required for meiosis in mouse oocytes. Biol Reprod 2011;85(5):1025–39. doi: 10.1095/biolreprod.111.091736.
  58. Pokorná E., Jordan P.W., O’Neill C.H. et al. Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential. Cell Motil Cytoskeleton 1994;28(1):25– 33. doi: 10.1002/cm.970280103.
  59. Sahai E., Marshall C.J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003;5(8):711–9. doi: 10.1038/ncb1019.
  60. Leavitt J., Gunning P., Kedes L., Jariwalla R. Smooth muscle alpha-action is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. Nature 1985;316(6031):840–2.
  61. Witt D.P., Brown D.J., Gordon J.A. Transformation-sensitive isoactin in passaged chick embryo fibroblasts transformed by Rous sarcoma virus. J Cell Biol 1983;96(6):1766–71.
  62. Okamoto-Inoue M., Taniguchi S., Sadano H. et al. Alteration in expression of smooth muscle alpha-actin associated with transformation of rat 3Y1 cells. J Cell Sci 1990;96(Pt 4):631–7.
  63. Vandekerckhove J., Leavitt J., Kakunaga T., Weber K. Coexpression of a mutant betaactin and the two normal beta- and gamma-cytoplasmic actins in a stably transformed human cell line. Cell 1980;22(3):893–9.
  64. Leavitt J., Ng S.Y., Aebi U. et al. Expression of transfected mutant betaactin genes: alterations of cell morphology and evidence for autoregulation in actin pools. Mol Cell Biol 1987;7(7):2457–66.
  65. Sadano H., Taniguchi S., Kakunaga T., Baba T. cDNA cloning and sequence of a new type of actin in mouse B16 melanoma. J Biol Chem 1988;263(31):15868–71.
  66. Lapidus K., Wyckoff J., Mouneimne G. et al. ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci 2007;120(Pt 18):3173–8. doi: 10.1242/jcs.000638.
  67. Shum M.S., Pasquier E., Po’uha S.T. et al. γ-Actin regulates cell migration and modulates the ROCK signaling pathway. FASEB J 2011;25(12):4423–33. doi: 10.1096/fj.11-185447.
  68. Tondeleir D., Lambrechts A., Müller M. et al. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics 2012;11(8):255–71. doi: 10.1074/mcp.M111.015099.
  69. Pawlak G., Helfman D.M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 2001;11(1):41–7.
  70. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A 1975;72(3):994–8.
  71. Rubin R.W., Warren R.H., Lukeman D.S., Clements E. Actin content and organization in normal and transformed cells in culture. J Cell Biol 1978;78(1):28–35.
  72. Verderame M., Alcorta D,. Egnor M. et al. Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells. Proc Natl Acad Sci U S A 1980;77(11):6624–8.
  73. Shagieva G., Domnina L., Makarevich O. et al. Depletion of mitochondrial reactive oxygen species downregulates epithelialto- mesenchymal transition in cervical cancer cells. Oncotarget 2017;8(3):4901– 13, in print.
  74. Дугина В.Б., Ермилова В.Д., Чемерис Г.Ю., Чипышева Т.А. Актины и кератины в диагностике базальноподобного рака молочной железы человека. Архив патологии 2010;(72):12–5. [Dugina V.B., Ermilova V.D., Chemeris G.Yu., Chipysheva T.A. Actins and keratins in diagnostics of human basal-like breast cancer. Arkhiv patologii = Pathology Archive 2010;72(2):12–5. (In Russ.)].
  75. Агапова Л.С., Черняк Б.В., Домнина Л.В. и др. Производное пластохинона, адресованное в митохондрии как средство, прерывающее программу старения. SKQ1 подавляет развитие опухолей из P53-дефицитных клеток. Биохимия 2008;73(12):1300– 16. [Agapova L.S., Chernyak B.V., Domnina L.V. et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. Inhibitory effect of SKQ1 on tumor development from P53-deficient cells. Biokhimiya = Biochemistry 2008;73(12):1300–16. (In Russ.)].
  76. Dugina V., Khromova N., Rybko V. et al. Tumor promotion by γ and suppression by β non- muscle actin isoforms. Oncotarget 2015;6(16):14556–71. doi: 10.18632/oncotarget.3989.
  77. Dugina V., Alieva I., Khromova N. et al. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1- containing + TIPs and γ-actin in epithelial cells. Oncotarget 2016;7(45):72699–715. doi: 10.18632/oncotarget.12236.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.