Preview

Advances in Molecular Oncology

Advanced search

ANALYSIS OF RELATIVE EXPRESSION OF THE HMGA2 GENE AND ONCOGENIC MICRORNA-221 IN CYTOLOGICAL SLIDES OBTAINED BY A FINE-NEEDLE ASPIRATION BIOPSY OF THE THYROID NODULES

https://doi.org/10.17650/2313-805X-2017-4-4-24-31

Abstract

Background. Fine-needle aspiration biopsy is recognized as the “gold standard” in the preoperative diagnosis of thyroid cancer. However, this method does not always allow reliable differentiation between benign and malignant thyroid nodules. Thus, the cytological report of a “follicular neoplasm or suspicious for a follicular neoplasm” suggests surgical lobectomy. However, in most cases, this conclusion does not point to follicular cancer but to benign neoplasm, follicular adenoma, where the surgical intervention is excessive. This implies the great relevance of finding biological markers capable of enhancing the specificity of detecting malignant neoplasms. Such markers may include an increase in the level of expression of oncogenes or a change in the expression of microRNA, since it is known that the content of a number of microRNAs changes significantly during the development of thyroid tumors.

Materials and methods. The expression level of the HMGA2 gene, normally active at the embryonic stage, and oncogenic miRNA-221 microRNA was analyzed using real-time reverse transcription polymerase chain reaction in 713 cytological preparations of the thyroid gland (stained material dried on glasses) obtained by standard fine-needle aspiration biopsy. The sample included preparations corresponding to different cytological diagnoses: benign (n = 375), follicular neoplasm or suspicious for a follicular neoplasm (n = 143), medullary carcinoma (n = 7), papillary carcinoma (n = 186) and anaplastic carcinoma (n = 2).

Results. The content of messenger RNA (mRNA) HMGA2 (P = 1.6 × 10–66, area under curve ROC 0.946) and miR-221 (P = 6.3 × 10–61, area under curve ROC 0.927) proved to be significantly elevated in papillary carcinoma compared to benign tumors. Follicular neoplasms showed significant heterogeneity in the quantity of both molecular markers. At the same time, an elevated level of miR-221 (3 times on average) was also characteristic of samples from this group with an increased level of expression of the HMGA2 gene (an average of 85 times). With regard to the quantity of these markers, the group of follicular neoplasms, in which no increase in the HMGA2 mRNA level was detected, did not differ from the group of benign nodules.

Conclusions. The obtained results show that assessing the expression of HMGA2 mRNA and oncogenic miR-221 makes it possible to differentiate the papillary thyroid carcinoma from goiter at the preoperative stage, and based on the content of the HMGA2 mRNA, the group of follicular neoplasms can be divided into subgroups presumably differing in the risk of malignancy.

About the Authors

S. E. Titov
Institute of Molecular and Cell Biology Siberian branch of Russian Academy of Sciences; Vector-Bestbuild
Russian Federation

8/2 Acad. Lavrent’eva prospect, Novosibirsk 630090



M. K. Ivanov
Institute of Molecular and Cell Biology Siberian branch of Russian Academy of Sciences
Russian Federation

8/2 Acad. Lavrent’eva prospect, Novosibirsk 630090



E. V. Tsivlikova
Vector-Bestbuild
Russian Federation

36 Scientific-production zone, Kol’tsovo, Novosibirsk Oblast 630559



M. S. Ganzha
Vector-Bestbuild
Russian Federation

36 Scientific-production zone, Kol’tsovo, Novosibirsk Oblast 630559



E. S. Malakhina
Institute of Molecular and Cell Biology Siberian branch of Russian Academy of Sciences
Russian Federation

8/2 Acad. Lavrent’eva prospect, Novosibirsk 630090



A. V. Malek
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia; Oncosystem; 11 Khoshimina St., Saint Petersburg 194356
Russian Federation

68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758; 5 Railway Clinical Hospital on the Station Novosibirsk-Glavniy



T. L. Poloz
Railway Clinical Hospital on the Station Novosibirsk-Glavniy
Russian Federation

2a Vladimirovskiy Spusk, Novosibirsk 630003



S. P. Shevchenko
City Clinical Hospital No. 1
Russian Federation

6 Zalesskogo St., Novosibirsk 630047



N. N. Kolesnikov
Institute of Molecular and Cell Biology Siberian branch of Russian Academy of Sciences
Russian Federation

8/2 Acad. Lavrent’eva prospect, Novosibirsk 630090



References

1. Ghossein R. Problems and controversies in the histopathology of thyroid carcinomas of follicular cell origin. Arch Pathol Lab Med 2009;133(5):683–91.

2. Baloch Z.W., Sack M.J., Yu G.H. et al. Fine-needle aspiration of thyroid: an institutional experience. Thyroid 1998;8(7):565–9.

3. Pallante P., Sepe R., Puca F., Fusco A. High mobility group a proteins as tumor markers. Front Med (Lausanne) 2015;2:15.

4. Cleynen I., Van de Ven W.J. The HMGA proteins: a myriad of functions (Review). Int J Oncol 2008;32(2):289–305.

5. Wang X., Liu X., Li A.Y. et al. Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res 2011;17(8):2570–80.

6. Ding X., Wang Y., Ma X. et al. Expression of HMGA2 in bladder cancer and its association with epithelial-tomesenchymal transition. Cell Prolif 2014;47(2):146–51.

7. Chiappetta G., Tallini G., De Biasio M.C. et al. Detection of high mobility group I HMGI(Y) protein in the diagnosis of thyroid tumors: HMGI(Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res 1998;58(18):4193–8.

8. Raskin L., Fullen D.R., Giordano T.J. et al. Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J Invest Dermatol 2013;133(11):2585–92.

9. Malek A., Bakhidze E., Noske A. et al. HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer 2008;123(2):348–56.

10. Belge G., Meyer A., Klemke M. et al. Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer 2008;47(1):56–63.

11. Lappinga P.J., Kip N.S., Jin L. et al. HMGA2 gene expression analysis performed on cytologic smears to distinguish benign from malignant thyroid nodules. Cancer Cytopathol 2010;118(5):287–97.

12. Jin L., Lloyd R.V., Nassar A. et al. HMGA2 expression analysis in cytological and paraffin-embedded tissue specimens of thyroid tumors by relative quantitative RTPCR. Diagn Mol Pathol 2011;20(2):71–80.

13. Nagar S., Ahmed S., Peeples C. et al. Evaluation of genetic biomarkers for distinguishing benign from malignant thyroid neoplasms. Am J Surg 2014;207(4):596–601.

14. Берёзкина И.С., Саприна Т.В., Зима А.П. и др. Исследование галектина-3, Ki-67, убиквитина, HMGA2 методом полимеразной цепной реакции в режиме реального времени в пункционном материале при узловом зобе. Клиническая и экспериментальная тиреоидология 2016;12(2):19–27. [Berezkina I.S., Saprina T.V., Zima A.P. et al. The study of galectin-3, Ki-67, ubiquitin, HMGA-2 by polymerase chain reaction in real time (RT-PCR) in the puncture specimens of nodular goiter. Klinicheskaya i eksperimental’naya tireoidologiya = Clinical and Experimental Thyroidology 2016;12(2):19–27. (In Russ.)].

15. Garofalo M., Quintavalle C., Romano G. et al. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 2012;12(1):27–33.

16. Urbich C., Kuehbacher A., Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Res 2008;79(4):581–8.

17. Galardi S., Mercatelli N., Giorda E. et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27kip1. J Biol Chem 2007;282(32):23716–24.

18. He H., Jazdzewski K., Li W. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 2005;102(52):19075–80.

19. Nikiforova M.N., Tseng G.C., Steward D. et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008;93(5):1600–8.

20. Dettmer M., Vogetseder A., Durso M.B. et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab 2013;98(1):E1–7.

21. Wojtas B., Ferraz C., Stokowy T. et al. Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas. Mol Cell Endocrinol 2014;388(1–2):1–9.

22. Cibas E.S., Ali S.Z. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 2009;132(5):658–65.

23. Titov S.E., Ivanov M.K., Karpinskaya E.V. et al. miRNA profiling, detection of BRAF V600E mutation and RET-PTC1 translocation in patients from Novosibirsk oblast (Russia) with different types of thyroid tumors. BMC Cancer 2016;16:201.

24. Titov S.E., Demenkov P.S., Ivanov M.K. et al. Selection and validation of miRNAs as normalizers for profiling expression of microRNAs isolated from thyroid fine needle aspiration smears. Oncol Rep 2016;36(5):2501–10.

25. Chiappetta G., Ferraro A., Vuttariello E. et al. HMGA2 mRNA expression correlates with the malignant phenotype in human thyroid neoplasias. Eur J Cancer 2008;44(7):1015–21.

26. Jang M.H., Jung K.C., Min H.S. The diagnostic usefulness of HMGA2, Survivin, CEACAM6, and SFN/14-3-3 δ in follicular thyroid carcinoma. J Pathol Transl Med 2015;49(2):112–7.


Review

For citations:


Titov S.E., Ivanov M.K., Tsivlikova E.V., Ganzha M.S., Malakhina E.S., Malek A.V., Poloz T.L., Shevchenko S.P., Kolesnikov N.N. ANALYSIS OF RELATIVE EXPRESSION OF THE HMGA2 GENE AND ONCOGENIC MICRORNA-221 IN CYTOLOGICAL SLIDES OBTAINED BY A FINE-NEEDLE ASPIRATION BIOPSY OF THE THYROID NODULES. Advances in Molecular Oncology. 2017;4(4):24-31. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-4-24-31

Views: 1239


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)