Preview

Успехи молекулярной онкологии

Расширенный поиск

Механизмы приобретенной резистентности к анти-EGFR-препаратам при немелкоклеточном раке легкого, не связанной с мутацией Т790М, и их значение в клинической практике

https://doi.org/10.17650/2313-805X-2018-5-3-17-24

Аннотация

Перспективы лечебных стратегий пациентов с немелкоклеточным раком легкого (НМРЛ) и наличием приобретенной резистентности к ингибиторам тирозинкиназы, не связанной с мутацией Т790М, с научных позиций достаточно широки, но в рутинной клинической практике в полном объеме пока недоступны. Понимание механизмов приобретенной резистентности к ингибиторам тирозинкиназы важно для клиницистов с позиции возможностей формирования более эффективных опций 2-й и последующих линий терапии НМРЛ. Наиболее изученным и частым механизмом, обусловливающим формирование приобретенной резистентности, является возникновение мутации Т790М в экзоне 20 гена EGFR. В данной статье представлены современные представления о механизмах приобретенной резистентности к ингибиторам тирозинкиназы, не связанной с мутацией Т790М, кратко изложена эволюция взглядов на лечение НМРЛ, прогрессирующего на фоне применения препаратов этой группы. Принимая во внимание многогранность нерешенных вопросов и направлений дальнейших научных поисков, нельзя забывать об имеющихся результатах исследований и умении грамотного использования описанных опций в рутинной клинической практике.

Об авторах

Е. В. Карабина
ГУЗ «Тульский областной онкологический диспансер»
Россия


Л. Н. Любченко
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия


М. М. Давыдов
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия


Список литературы

1. Lynch T.J., Bell D.W., Sordella R. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350(21):1229–39. DOI: 10.1056/NEJMoa040938. PMID: 15118073.

2. Paez J.G., Janne P.A., Lee J.C. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304(5676):1497–500. DOI: 10.1126/science.1099314. PMID: 15118125.

3. Sharma S.V., Bell D.W., Settleman J., et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007;7(3):169–81. DOI: 10.1038/nrc2088. PMID: 17318210.

4. Reguart N., Remon J. Common EGFR-mutated subgroups(Del19/L858R) in advanced non-small cell lung cancer: chasing better outcomes with tyrosinekinase inhibitors. Future Oncol 2015;11(8):1–13. DOI: 10.2217/fon.15.15. PMID: 25629371.

5. Shi Y.K., Wang L., Han B.H. et al. Firstline icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutationpositive lung adenocarcinoma (CONVINCE): a phase 3, open-label, randomized study. Ann Oncol 2017;28(10):2443–50. DOI: 10.1093/annonc/mdx359. PMID: 28945850.

6. Inoue A., Suzuki T., Fukuhara T. et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 2006;24(21): 3340–6. DOI: 10.1200/JCO.2005.05.4692. PMID: 16785471.

7. Rosell R., Moran T., Queralt C. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009;361(10):958–67. DOI: 10.1056/NEJMoa0904554. PMID: 19692684.

8. Fukuoka M., Wu Y.L., Thongprasert S. et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011;29(21):2866–74. DOI: 10.1200/JCO.2010.33.4235. PMID: 21670455.

9. Mok T.S., Wu Y.L., Thongprasert S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361(10):947–57. DOI: 10.1056/NEJMoa0810699. PMID: 19692680.

10. Maemondo M., Inoue A., Kobayashi K. et al. Gefitinib or chemotherapy for nonsmall-cell lung cancer with mutated EGFR. N Engl J Med 2010;362(25):2380–8. DOI: 10.1056/NEJMoa0909530. PMID: 20573926.

11. Mitsudomi T., Morita S., Yatabe Y. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harboring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol 2010;11:121–8.

12. Sequist L.V., Yang J.C., Yamamoto N. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013;31(27):3327–34. DOI: 10.1200/JCO.2012.44.2806. PMID: 23816960.

13. Mok T., Cheng Y., Zhou X. et al. Dacomitinib versus gefitinib for the firstline treatment of advanced EGFR mutation positive non-small-cell lung cancer (ARCHER 1050): a randomized, open-label phase III trial. In: American Society of Clinical Oncology 2017.

14. Zhou C., Wu Y.L., Сhen G. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicenter, open-label, randomized, phase 3 study. Lancet Oncol 2011;12(8):735–42. DOI: 10.1016/S1470-2045(11)70184-X. PMID: 21783417.

15. Wu Y.L., Zhou C., Hu C.P. et al. Afatinib versus cisplatin plus gemcitabine for firstline treatment of Asian patients with advanced non-small-cell lung cancer harboring EGFR mutations (LUX-lung 6): an open-label, randomized phase 3 trial. Lancet Oncol 2014;15(2):213–22.

16. Rosell R., Carcereny E., Gervais R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutations-positive non-small-cell lung cancer (EURTAC): a multicenter, open-label, randomized phase 3 trial. Lancet Oncol 2012;13:239–46.

17. Park K., Ton E.H., O’Byrne K. et al. Afatinib vs gefitinib as first-line treatment for patients with EGFR mutation-positive non-small-cell lung cancer (LUX–Lung 7): a phase 2B, open-label, randomized controlled trial. Lancet Oncol 2016;17(5):577–89. DOI: 10.1016/S1470-2045(16)30033-X. PMID: 27083334.

18. Cortot A.B., Jänne P.A. Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 2014;23(133):356–66. DOI: 10.1183/09059180.00004614. PMID: 25176972.

19. Yu H.A., Arcila M.E., Rekhtman N. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancer. Clin Cancer Res 2013;19(8):2240–7. DOI: 10.1158/1078-0432.CCR-12-2246. PMID: 23470965.

20. Majem M., Remon J. Tumor heterogeneity: evolution through space and time in EGFR mutant non small cell lung cancer patients. Lung Cancer Res 2013;2(3):226–37. DOI: 10.3978/j.issn. 2218-6751.2013.03.09. PMID: 25806236.

21. Jackman D., Pao W., Riely G.J. et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010;28(2):357–60. DOI: 10.1200/JCO.2009.24.7049. PMID: 19949011.

22. Oxnard G.R., Arcila M.E., Sima C.S. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin Cancer Res 2011;17(6):1616–22. DOI: 10.1158/1078-0432.CCR-10-2692. PMID: 21135146.

23. Sun J.M., Ahn M.J., Choi Y.L. et al. Clinical implications of T790M mutation in patients with acquired resistance to EGFR tyrosine kinase inhibitors. Lung Cancer 2013;82(2):294–8. DOI: 10.1016/j.lungcan.2013.08.023. PMID: 24035188.

24. Kuiper J.L., Heideman D.A., Thunnissen E. et al. Incidence of T790M mutation in (sequential) rebiopsies in EGFR-mutated NSCLC-patients. Lung Cancer 2014;85(1):19–24. DOI: 10.1016/j.lungcan.2014.03.016. PMID: 24768581.

25. Li W., Ren S., Li J. et al. T790M mutation is associated with better efficacy of treatment beyond progression with EGFR-TKI in advanced NSCLC patients. Lung Cancer 2014;84(3):295–300. DOI: 10.1016/j.lungcan.2014.03.011. PMID: 24685306.

26. Sequist L.V., Waltman B.A., Dias-Santagata D. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011;3(75):75ra26. DOI: 10.1126/scitranslmed.3002003. PMID: 21430269.

27. Yang J.C., Ahn M.J., Kim D.W. et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study Phase II extension component. J Clin Oncol 2017;35(12): 1288–96. DOI: 10.1200/JCO. 2016.70.3223. PMID: 28221867.

28. Yun C.H., Mengwasser K.E., Toms A.V. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 2008;105(6):2070–5. DOI: 10.1073/pnas.0709662105. PMID: 18227510.

29. Kobayashi S., Boggon T.J., Dayaram T. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005;352(8):786–92. DOI: 10.1056/NEJMoa044238. PMID: 15728811.

30. Cross D.A., Ashton S.E., Ghiorghiu S. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014;4(9):1046–61. DOI: 10.1158/2159-8290.CD-14-0337. PMID: 24893891.

31. Niederst M.J., Sequist L.V., Poirier J.T. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 2015;6:6377. DOI: 10.1038/ncomms7377. PMID: 25758528.

32. Lee J.K., Lee J., Kim A. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol 2017;35(26):3065–74. DOI: 10.1200/JCO.2016.71.9096. PMID: 28498782.

33. Lovly C.M. ASCO educational book, 2015:e165–173.

34. Engelman J.A., Mukohara T., Zejnullahu K. et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest 2006;116(10):2695–706. DOI: 10.1172/JCI28656. PMID: 16906227.

35. Bean J., Brennan C., Shih J.Y. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumours with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 2007;104(52):20932–7.

36. Xu L., Kikucbi E., Xu C. et. al. Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers codriven by mutant EGFR containing T790M and MET. Cancer Res 2012;72(13):3302–11. DOI: 10.1158/0008-5472.CAN-11-3720. PMID: 22552292.

37. Cben G., Noor A., Kronenberger P. et al. Synergistic effect of afatinib with su11274 in non-small-cell lung cancer cells resistant to gefitinib or erlotinib. PLoS One 2013;8(3):e59708. DOI: 10.1371/ journal.pone.0059708. PMID: 23527257.

38. Scagliotti G. A randomized, controlled, open-label, phase 2 study of erlotinib with or without MET antibody emibetuzumab as first line treatment for EGFR-mutant NSCLC patients who have disease control after an 8-week lead-in treatment with erlotinib. ASCO 2017, abstract 9019.

39. Sharma S.V., Lee D.Y., Li B. et al. A chromatin-mediated reversible drugtolerant state in cancer cell subpopulations. Cell 2010;141(1):69–80. DOI: 10.1016/j.cell.2010.02.027. PMID: 20371346.

40. Altavilla G.A. Occurrence of HER2 amplification in EGFR-mutant lung adenocarcinoma with acquired resistance to EGFR-TKis. J Clin Oncol 2013; suppl; abstr 8047.

41. Kris G.M., Johnson B.E., Berry L.D. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014; 311(19):1998–2006. DOI: 10.1001/jama.2014.3741. PMID: 24846037.

42. Li B.T., Ross D.S., Aisner D.L. et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol 2016;11(3):414–9. DOI: 10.1016/j.jtho.2015.10.025. PMID: 26723242.

43. Takezawa K., Pirazzoli V., Arcila M.E. et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov 2012;2(10):922–33. DOI: 10.1158/2159-8290.CD-12-0108. PMID: 22956644.

44. Engelman J.A., Zejnullahu K., Mitsudomi T. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316(316):1039–43. DOI: 10.1126/science.1141478. PMID: 17463250.

45. Ercan D., Xu C., Yanagita M. et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov 2012;2(10):934–47. DOI: 10.1158/2159-8290.CD-12-0103. PMID: 22961667.

46. Zang Z., Lee J.C., Lin L. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 2012;44(8):852–60. DOI: 10.1038/ng.2330. PMID: 22751098.

47. Byers L.A., Diao L., Wang J. et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies AXL as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013;19(1):279–90. DOI: 10.1158/1078-0432.CCR-12-1558. PMID: 23091115.

48. Bivona T.G., Heironymus H., Parker J. et al. FAS and NF-κВ signaling modulate dependence of lung cancers on mutant EGFR. Nature 2011;471(7339):523–6. DOI: 10.1038/nature09870. PMID: 21430781.

49. Thiery J.P. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2002;2(6):442–54. DOI: 10.1038/nrc822. PMID: 12189386.

50. Della Corte C.M., Bellevicine C., Vicidomini G. et al. SMO gene amplification and activation of the henghog pathway as novel mechanisms of resistance to antiepidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res 2015;21(20):4686–97. DOI: 10.1158/1078-0432.CCR-14-3319. PMID: 26124204.

51. Thomson S., Buck E., Petti F. et al. Epithelial to mesenchymal transition is a determinant of sensitivity of nonsmall-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 2005;65(20):9455–62. DOI: 10.1158/0008-5472.CAN-05-1058. PMID: 16230409.

52. Rho J.K., Choi Y.J., Lee J.K. et al. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small-cell lung carcinoma cell line. Lung Cancer 2009;63(2):210–26. DOI: 10.1016/j.lungcan.2008.05.017. PMID: 18599154.

53. Suda K., Tomizawa K., Fujii M. et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol 2011;6(7):1152–61. DOI: 10.1097/JTO.0b013e318216ee52. PMID: 21597390.

54. Buonato J.M., Lazzara M.J. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 2014;74(1):309–19. DOI: 10.1158/0008-5472.CAN-12-4721. PMID: 24108744.

55. Lin K., Cheng J., Yang T. et al. EGFRTKI down-regulates PD–L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem Biophys Res Commun 2015;463(1–2):95–101. DOI: 10.1016/j.bbrc.2015.05.030. PMID: 25998384.

56. Haratani K., Hayashi H., Tanaka T. et al. Tumour immune microenvironment and nivolumab efficacy in igfr mutationpositive non-small-cell lung cancer based on T790m status after disease progression during EGFR-TKI treatment. Ann Oncol 2017;28(7):1532–9. DOI: 10.1093/annonc/mdx183. PMID: 28407039.

57. Сакаева Д.Д., Гордиев М.Г. Основные механизмы резистентности к ингибиторам тирозинкиназы EGFR. Фарматека 2017;8(341):59–65.

58. Girard N. Optimizing outcomes in EGFR mutation-positive NSCLC: which tyrosine kinase inhibitor and when? Future oncology. Review. www.futuremedicine. com/doi/suppl/10/2217/fon-2017–0636(Epub ahead of print).

59. Gandara D.R., Li T., Lara P.N. et al. Acquired resistance to targeted therapies against oncogene-driven non-small-cell lung cancer: approach to subtyping progressive disease and clinical implications. Clin Lung Cancer 2014;15(1):1–6. DOI: 10.1016/j.cllc. 2013.10.001. PMID: 24176733.

60. Westover D., Zugazagoitia J., Cho B.C. et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol 2018;29(Supplement 1):i10–9. DOI: 10.1093/annonc/mdx703. PMID: 29462254.

61. Weickhardt A.J., Scheier B., Burke J.M. et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogeneaddicted non-small-cell lung cancer. J Thorac Oncol 2012;7(12):1807–14. DOI: 10.1097/JTO.0b013e3182745948. PMID: 23154552.

62. Yu H.A., Sima C.S., Huang J. et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2013;8(3):346–51. DOI: 10.1097/JTO.0b013e31827e1f83. PMID: 23407558.

63. Conforti F., Catania C., Toffalorio F. et al. EGFR tyrosine kinase inhibitors beyond focal progression obtain a prolonged disease control in patients with advanced adenocarcinoma of the lung. Lung Cancer 2013;81(3):440–4. DOI: 10.1016/j. lungcan. 2013.05.019. PMID: 23810573.

64. Solca F., Dahl G., Zoephel A. et al. Target binding properties and cellular activity of afatinib(BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther 2012;343(2):342–50. DOI: 10.1124/ jpet.112.197756. PMID: 22888144.

65. Modjtahedi H., Cho B.C., Michel M.C., Solca F. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. Naunyn Schmiedebergs Arch Pharmacol 2014;387(6):505–21. DOI: 10.1007/s00210-014-0967-3. PMID: 24643470.

66. Inoue A., Kobayashi K., Maemondo M. et al. Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatin-paclitaxel for chemo-naïve non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol 2013;24(1):54–9. DOI: 10.1093/annonc/mds214. PMID: 22967997.

67. Katakami N., Atagi S., Goto K. et al. LUX-lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 2013;31(27):3335–41. DOI: 10.1200/JCO.2012.45.0981. PMID: 23816963.

68. Miller V.A., Hirsh V., Cadranel J. et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX–Lung 1): a phase 2b/3 randomized trial. Lancet Oncol 2012;13(5):528–38. DOI: 10.1016/S1470-2045(12)70087-6. PMID: 22452896.

69. Schuler M., Yang J.C., Park K. et al. Afatinib beyond progression in patients with advanced non-small-cell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: phase III randomized LUX– Lung 5 trial. Ann Oncol 2015;27:417–23.

70. Akito Hata. Afatinib (Afa) plus bevacizumab (Bev) combination after acquired resistance (AR) to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutant nonsmall cell lung cancer (NSCLC): Multicenter single arm phase II trial (ABC-study). Abstract 9034. Poster Session (Board #360). ASCO 2017. Clinical trial information: UMIN000014710.

71. Rosell R., Dafni U., Felip E. et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, Phase II trial. Lancet Respir Med 2017;5(5):435–44. DOI: 10.1016/S2213-2600(17)30129-7. PMID: 28408243.

72. Janjigian Y.Y., Smit E.F., Groen H.J. et al. Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor-Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations. Cancer Discov 2014;4(9):1036–45. DOI: 10.1158/2159–8290.CD-14-0326. PMID: 25074459.

73. Horn L. Continued afatinib (A) with the addition of cetuximab (C) after progression on afatinib in patients with acquired resistance (AR) to gefitinib (G) or erlotinib (E). Oncol Biology Physics, 2014, 90 Suppl, Abstr 3333.

74. Corallo S., D’Argento E., Strippoli A. et al. Treatment options for EGFR T790M-negative EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer. Target Oncol 2017;12(2):153–61. DOI: 10.1007/s11523-017-0479-4. PMID: 28188446.

75. De Langen A. Trastuzumab and paclitaxel in patients with EGFR mutated NSCLC that express HER2 after progression on EGFR TKI treatment. ASCO 2017, abstract 9042.

76. Brock A., Chang H., Huang S. Nongenetic heterogeneity a mutationindependent driving force for the somatic evolution of tumours. Nat Rev Genet 2009;10(5):336–42. DOI: 10.1038/nrg2556. PMID: 19337290.

77. Gupta P.B., Fillmore C.M., Jiang G. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011;146(4):633–44. DOI: 10.1016/j.cell.2011.07.026. PMID: 21854987.

78. Chen Z., Zhong W.Z., Zhang X.C. et al. EGFR mutation heterogeneity and the mixed response to EGFR tyrosine kinase inhibitors of lung adenocarcinomas. Oncologist 2012;17(7):978–85. DOI: 10.1634/theoncologist.2011-0385. PMID: 22673630.

79. Soria J.C., Wu Y.L., Nakagawa K. et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol 2015;16(8): 990–8. DOI: 10.1016/S1470-2045(15)00121-7. PMID: 26159065.


Рецензия

Для цитирования:


Карабина Е.В., Любченко Л.Н., Давыдов М.М. Механизмы приобретенной резистентности к анти-EGFR-препаратам при немелкоклеточном раке легкого, не связанной с мутацией Т790М, и их значение в клинической практике. Успехи молекулярной онкологии. 2018;5(3):17-24. https://doi.org/10.17650/2313-805X-2018-5-3-17-24

For citation:


Karabina E.V., Lubchenko L.N., Davydov M.M. The mechanisms of acquired resistance to anti-EGFR drugs in non-small cell lung cancer not associated with T790m mutation and their significance in clinical practice. Advances in Molecular Oncology. 2018;5(3):17-24. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-3-17-24

Просмотров: 822


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)