Preview

Advances in Molecular Oncology

Advanced search

Epstein–Barr virus in the ethnic Tatars population: the infection and sequence variants of LMP1 oncogene

https://doi.org/10.17650/2313-805X-2018-5-3-65-74

Abstract

Objective of the investigation was to study the infection of ethnic Tatars with the Epstein–Barr virus (EBV) and to analyze the genetic structure of the oncogene of the virus, the latent membrane protein 1 (LMP1), in the virus strains of Tatar origin. Materials and methods. The materials for the study were samples of boucle flushes of 60 students from the Kazan State Medical University who are ethnic Tatars (Tatars no less than in the 3rd generation). Amplified from DNA of boucle flushes the nucleotide sequences of the LMP1 samples translated into DNA amino acid sequences, have undergone classification based on the well-known and widely used in literature the R.H. Edwards et al. classification. Results. The analysis of nucleotide and deductive amino acid sequences of the 41 LMP1 amplicons revealed their homology with only three gene variants from the R.H. Edwards et al. classification (1999): 95.8/A (29.3 %; 12/41), Med– (14.6 %; 6/41) and China1 (7.3 %, 3/41). Such variants of LMP1 as Alaskan, Med+, Chinа2, China3 and NC, were not found. Among the LMP1 samples of Tatar origin in 20 cases (48.8 %), the composition of the mutations found did not allow them to be assigned to any of the oncogene variants listed above. Out of this number, in 7 (17.1 %) cases a mono group of LMP1 samples was found, differing not only from representatives of the Slavs, inhabitants of the European part of Russia, but also from other Kazan samples, and was designated as LMP1-TatK. The remaining 13 samples of LMP1 (31.7 %), not belonging to any of the known classifications, formed the group designated by us as an LMP1 group beside the classification (LMP1BC). Conclusion. Continuation of the study of the molecular-biological and functional properties of LMP1 in TatK and BC groups, which constitute 48.8 % of the number of gene samples studied, and an analysis of the peculiarities of the ethnic Tatar genotype, will probably help to clarify whether certain EBV strains influence morbidity and mortality in Tatar population with malignant neoplasms, which include EBVassociated cases.

About the Authors

K. V. Smirnova
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Pirogov National Research Medical University, Ministry of Health of Russia
Russian Federation


N. B. Senyuta
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation


I. V. Botezatu
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation


T. E. Dushenkina
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation


A. K. Lubenskaya
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation


A. A. Frolovskaya
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation


S. V. Petrov
Republican Clinical Oncological Dispensary, Ministry of Health of the Republic of Tatarstan
Russian Federation


A. V. Lichtenstein
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation


V. E. Gurtsevitch
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation


References

1. Fujiki H., Watanabe T., Suganuma M. Cell-sufaсe nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. J Cancer Res Clin Oncol 2014;140(7):689–99. DOI: 10.1007/s00432-014-1587-5. PMID: 24469254.

2. Koutsioumpa M., Papadimitriou E. Cellsuface nucleolin as a target for anti-cancer therapies. Recent Part Anticancer Drug Discov 2018;9(2):137–52. PMID: 24251811.

3. Lushnikova A., Ponkratova D., Andreev S. et al. A рossibility for therapy of metastatic cutaneous melanoma with cationic peptides. Eur J Cancer 2017;72(Sl): 127–28.

4. Lushnikova A.A., Ponkratova D.A., Rudakova A.A. et al. The mechanisms of antitumor toxicity in a number of cationic peptides. Modern Science 2017;11:124–6.

5. Lushnikova A.A., Ponkratova D.A., Morozova L.F., Andreev S.M. Induction of apoptosis in cutaneous melanoma cells by cationic peptides. Int Sci J 2017;7– 2(61):75–9.

6. Dang W., Muto Y., Inoue Y. et al. RCSB PDB TI Solution structure of the RRM_1domain of NCL protein. FAUCRDT 2005;12(12). Available at: http://www.rcsb.org/structure/2FC8.

7. Kellenberger E., Rodrigo J., Muller P., Rognan D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 2004;57(2):225–42. DOI: 10.1002/prot. 20149. PMID: 15340911.

8. Site Map User Manual. Schrödinger: LLC. Schrödinger Press, 2009.

9. Glide User Manual. Schrödinger: LLC. Schrödinger Press, 2015.

10. Induced Fit Docking. Schrödinger: LLC. Schrödinger Press, 2009.

11. Du X., Li Y., Xia Y.L. et al. Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 2016;17(2):144–78. DOI: 10.3390/ijms17020144. PMID: 26821017.

12. Balça-Silva J., do Carmo A., Täo H. et al. Nucleolin is expressed in patient-derived samples and glioblastoma cells, enabling improved intracellular drug delivery and cytotoxicity. Exp Cell Res 2018;370(1): 68–77. DOI: 10.1016/j.yexcr.2018.06.005. PMID: 29902537.encoded latent membrane protein LMP1 are required for transformation of rat-1 fibroblasts. J Virol 1993;67(3):1638–46. PMID: 8382313.

13. Kulwichit W., Edwards R.H., Davenport E.M. et al. Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 1998;95(20):11963–8. PMID: 9751773.

14. Hu L.F., Zabarovsky E.R., Chen F. et al. Isolation and sequencing of the Epstein– Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J Gen Virol 1991;72(Pt 10):2399–409. DOI: 10.1099/0022-1317-72-10-2399. PMID: 1681026.

15. Blake S.M., Eliopoulos A.G., Dawson C.W., Young L.S. The transmembrane domains of the EBV-encoded latent membrane protein 1(LMP1) variant CAO regulate enhanced signalling activity. Virology 2001;282(2):278–87. DOI: 10.1006/viro.2001.0828. PMID: 11289810.

16. Farrell P.J. Signal transduction from the Epstein–Barr virus LMP-1 transforming protein. Trends Microbiol 1998;6(5):175–7. PMID: 9614338.

17. Huen D.S., Henderson S.A., Croom-Carter D., Rowe M. The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 1995;10(3):549–60. PMID: 7845680.

18. Dirmeier U., Neuhierl B., Kilger E. et al. Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. Cancer Res 2003;63(11):2982–9. PMID: 12782607.

19. Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology 1999;261(1):79–95. DOI: 10.1006/viro.1999.9855. PMID: 10441557.

20. Feederle R., Klinke O., Kutikhin A. et al. Epstein–Barr virus: from the detection of sequence polymorphisms to the recognition of viral types. Curr Top Microbiol Immunol 2015;390(Pt 1):119–48. DOI: 10.1007/978-3-319-22822-8_7. PMID: 26424646.

21. Neves M., Marinho-Dias J., Ribeiro J., Sousa H. Epstein–Barr virus strains and variations: geographic or disease-specific variants? J Med Virol 2017;89(3):373–87. DOI: 10.1002/jmv.24633. PMID: 27430663.

22. Gurtsevitch V.E., Iakovleva L.S., Shcherbak L.N. et al. The LMP1 oncogene sequence variations in patients with oral tumours associated or not associated with the Epstein–Barr. Mol Biol (Mosk) 2013;47(6):987–95. PMID: 25509860.

23. Hahn P., Novikova E., Scherback L. et al. The LMP1 gene isolated from Russian nasopharyngeal carcinoma has no 30-bp deletion. Int J Cancer 2001;91(6):815–21. PMID: 11275985.

24. Miller W.E., Edwards R.H., Walling D.M., Raab-Traub N. Sequence variation in the Epstein–Barr virus latent membrane protein 1. J Gen Virol 1994;75(Pt 10):2729–40. DOI: 10.1099/0022-1317-75-10-2729. PMID: 7931159.

25. Lawrence J.B., Villnave C.A., Singer R.H. Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell 1988;52(1):51–61. PMID: 2830981.

26. Lo Y.M., Chan L.Y., Lo K.W. et al. Quantitative analysis of cell-free Epstein– Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 1999;59(6):1188–91. PMID: 10096545.

27. Botezatu I.V., Kondratova V.N., Shelepov V.P., Lichtenstein A.V. DNA melting analysis: application of the “open tube” format for detection of mutant KRAS. Anal Biochem 2011;419(2):302–8. DOI: 10.1016/j.ab.2011.08.015. PMID: 21889482.

28. Senyuta N., Yakovleva L., Goncharova E. et al. Epstein–Barr virus latent membrane protein 1 polymorphism in nasopharyngeal carcinoma and other oral cavity tumors in Russia. J Med Virol 2014;86(2): 290–300. DOI: 10.1002/jmv.23729. PMID: 24009107.

29. Li H.P., Chang Y.S. Epstein–Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 2003;10(5):490– 504. DOI: 10.1159/000072376. PMID: 12928589.

30. Kanai K., Satoh Y., Saiki Y. et al. Difference of Epstein–Barr virus isolates from Japanese patients and African Burkitt’s lymphoma cell lines based on the sequence of latent membrane protein 1. Virus Genes 2007;34(1):55–61. DOI: 10.1007/s11262-006-0010-y. PMID: 16917741.

31. Wilmes E., Wolf H., Haus M. Tonsillar cancer and Epstein–Barr virus. Laryngol Rhinol Otol (Stuttg) 1983;62(12):586–9. PMID: 6323895.

32. Wu L.Y., Cheng J., Lu Y. et al. Epstein– Barr virus infection in benign lymphoepithelial lesions with malignant transformation of salivary glands. Zhonghua Kou Qiang Yi Xue Za Zhi 2004;39(4):291–3. PMID: 15454012.

33. Ayadi W., Khabir A., Hadhri-Guiga B. et al. North African and Southeast Asian nasopharyngeal carcinomas: between the resemblance and the dissemblance. Bull Cancer 2010;97(4):475–82. DOI: 10.1684/bdc.2010.1090. PMID: 20385521.

34. Namikawa T., Fujisawa K., Munekage E. et al. Epstein–Barr virus-associated early gastric carcinoma with lymphoid stroma, accompanied with lymph node metastasis. Mol Clin Oncol 2018;8(4):561–6. DOI: 10.3892/mco.2018.1567. PMID: 29541465.

35. Alexander F.E., Jarrett R.F., Lawrence D. et al. Risk factors for Hodgkin’s disease by Epstein–Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer 2000;82(5):1117–21. DOI: 10.1054/bjoc.1999.1049. PMID: 10737396.

36. Andreone P., Gramenzi A., Lorenzini S. et al. Posttransplantation lymphoproliferative disorders. Arch Intern Med 2003;163:1997–2004. DOI: 10.1001/ archinte.163.17.1997. PMID: 14504111.

37. State of oncological care in Russia in 2016. Eds.: А.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMIRTS” Minzdrava Rossii, 2017. 236 p. (In Russ.).


Review

For citations:


Smirnova K.V., Senyuta N.B., Botezatu I.V., Dushenkina T.E., Lubenskaya A.K., Frolovskaya A.A., Petrov S.V., Lichtenstein A.V., Gurtsevitch V.E. Epstein–Barr virus in the ethnic Tatars population: the infection and sequence variants of LMP1 oncogene. Advances in Molecular Oncology. 2018;5(3):65-74. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-3-65-74

Views: 874


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)