Preview

Успехи молекулярной онкологии

Расширенный поиск

Cпособы получения и перспективы применения биспецифичных антител для лечения онкологических заболеваний

https://doi.org/10.17650/2313-805X-2018-5-4-30-40

Полный текст:

Аннотация

Биспецифичными называют молекулы антител, содержащие 2 разных антигенсвязывающих центра. Особый интерес к молекулам биспецифичных антител обусловлен их терапевтическим применением. Два препарата терапевтических биспецифичных иммуноглобулинов, разрешенные к применению в США и странах Европы, направлены на лечение онкологических заболеваний. Работы, опубликованные в последние годы, посвящены различным способам получения моноклональных биспецифичных антител, исследованию их физико-химических свойств, биологической активности, доклиническим и клиническим испытаниям. Настоящий обзор рассматривает различные подходы к получению противоопухолевых биспецифичных иммуноглобулинов, а также перспективы их практического применения.

Об авторах

С. Е. Седых
ФГБУН Институт химической биологии и фундаментальной медицины, Сибирское отделение РАН; ФГБОУ ВО Новосибирский национальный исследовательский государственный университет
Россия

Сергей Евгеньевич Седых.

630090 Новосибирск, пр-т Академика Лаврентьева, 8; 630090 Новосибирск, ул. Пирогова, 2



Г. А. Невинский
ФГБУН Институт химической биологии и фундаментальной медицины, Сибирское отделение РАН; ФГБОУ ВО Новосибирский национальный исследовательский государственный университет
Россия

630090 Новосибирск, пр-т Академика Лаврентьева, 8; 630090 Новосибирск, ул. Пирогова, 2



Список литературы

1. Deyev S.M., Lebedenko E.N. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae 2009;1(1):32—50. PMID: 22649585.

2. Redman J.M., Hill E.M., AlDeghaither D., Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015;67(2):28—45. DOI: 10.1016/j.molimm.2015.04.002. PMID: 25911943.

3. Deyev S.M., Lebedenko E.N., Petrovskaya L.E. et al. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. Russian Chemical Reviews 2015;84(1):1—26. DOI: 10.1070/RCR4459.

4. Василенко Е.А., Мохонов В.В., Горшкова Е.Н., Астраханцева И.В. Биспецифические антитела: формы и области применения. Молекулярная биология 2018;52(3):380—93. DOI: 10.7868/S0026898418030035.

5. Zhang X., Yang Y., Fan D., Xiong D. The development of bispecific antibodies and their applications in tumor immune escape. Exp Hematol Oncol 2017;6(1):12. DOI: 10.1186/s40164-017-0072-7. PMID: 28469973.

6. Kontermann R. Dual targeting strategies with bispecific antibodies. MAbs 2012;4(2):182—97. DOI: 10.4161/mabs.4.2.19000. PMID: 22453100.

7. Sedykh S., Prinz V., Buneva V., Nevinsky G. Bispecific antibodies: design, therapy, perspectives. Drug Design, Development and Therapy 2018;12:195-208. DOI: 10.2147/DDDT.S151282.

8. Spiess C., Zhai Q., Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015;67(2):95—106. DOI: 10.1016/j.molimm.2015.01.003. PMID: 25637431.

9. Wu C., Ying H., Grinnell C. et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 2007;25(11):1290—7. DOI: 10.1038/nbt1345. PMID: 17934452.

10. Jakob C.G., Edalji R., Judge R. et al. Structure reveals function of the dual variable domain immunoglobulin (DVD-IgTM) molecule. MAbs 2013;5(3): 358—63. DOI: 10.4161/mabs.23977. PMID: 23549062.

11. Hu S., Fu W., Xu W. et al. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res 2015;75(1):159—70. DOI: 10.1158/0008-5472.CAN-14-1670. PMID: 25371409.

12. Correia I., Sung J., Burton R. et al. The structure of dual-variable-domain immunoglobulin molecules alone and bound to antigen. MAbs 2013;5(3):364—72. DOI: 10.4161/mabs.24258. PMID: 23572180.

13. Brennan M., Davison P.F., Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science (New York, NY) 1985;229(4708):81—3.

14. Doppalapudi V.R,. Tryder N., Li L. et al. Chemically programmed antibodies: En-dothelin receptor targeting CovX-Bodies-TM. Bioorg Med Chem Lett 2007;17(2):501—6. DOI: 10.1016/j.bmcl.2006.10.009. PMID: 17055724.

15. Lum L.G., Thakur A., Liu Q. et al. CD20-targeted T cells after stem cell transplantation for high risk and refractory non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant 2013;19(6):925—33. DOI: 10.1016/j.bbmt.2013.03.010. PMID: 23529012.

16. Chang C.H., Rossi E.A., Goldenberg D.M. The dock-and-lock method: a novel platform technology for building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res 2007;13(18):5586s—91s. DOI: 10.1158/1078-0432.CCR-07-1217.

17. Rossi E.A., Goldenberg D.M., Cardillo T.M. et al. Hexavalent bispecific antibodies represent a new class of anticancer therapeutics: 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood 2009;113(24):6161—71. DOI: 10.1182/blood-2008-10-187138. PMID: 19372261.

18. Rossi E.A., Rossi D.L., Stein R. et al. A bispecific antibody-ifn 2b immunocyto-kine targeting CD20 and HLA-DR is highly toxic to human lymphoma and multiple myeloma cells. Cancer Res 2010;70(19):7600—9. DOI: 10.1158/0008-5472.CAN-10-2126.

19. Rossi D.L., Rossi E.A., Cardillo T.M. et al. A new class of bispecific antibodies to redirect T cells for cancer immunotherapy. MAbs 2014;6(2):381 —91. DOI: 10.4161/mabs.27385. PMID: 24492297.

20. Mhller D., Karle A., MeiBburger B. et al. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 2007;282(17):12650—60. DOI: 10.1074/jbc.M700820200. PMID: 17347147.

21. Chelius D., Ruf P., Gruber P. et al. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010;2(3):309—19. DOI: 10.4161/mabs.2.3.11791. PMID: 20418662.

22. Atwell S., Ridgway J.B., Wells JA., Carter P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol 1997;270(1):26—35. DOI: 10.1006/jmbi.1997.ni6. PMID: 9231898.

23. Rispens T., Meesters J., den Bleker T.H. et al. Fc-Fc interactions of human IgG4 require dissociation of heavy chains and are formed predominantly by the intrachain hinge isomer. Mol Immunol 2013;53(1—2):35—42. DOI: 10.1016/j.mo-limm.2012.06.012. PMID: 22784992.

24. Bostrom J., Yu S.F., Kan D. et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009;323(5921):1610—4. DOI: 10.1126/science.1165480. PMID: 19299620.

25. Schaefer G., Haber L., Crocker L.M. et al. A Two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 2011;20(4):472-86. DOI: 10.1016/j.ccr.2011.09.003. PMID: 22014573.

26. Baeuerle P.A., Kufer P., Bargou R. BiTE: Teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 2009;11(1):22—30. PMID: 19169956.

27. Dreier T., Lorenczewski G., Brandl C. et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002;100(6):690-7. DOI: 10.1002/ijc.10557. PMID: 12209608.

28. Haas C., Krinner E., Brischwein K. et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 2009;214(6):441-53. DOI: 10.1016/j.imbio.2008.11.014. PMID: 19157637.

29. Davies J., Riechmann L. Antibody VH domains as small recognition units. Biotechnology 1995;13(5):475—9. PMID: 9634788.

30. Els Conrath K., Lauwereys M., Wyns L., Muyldermans S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 2001;276(10):7346-50. DOI: 10.1074/jbc.M007734200. PMID: 11053416.

31. Kontermann R.E., Brinkmann U. Bispecific antibodies. Drug Discov Today 2015;20(7):838—47. DOI: 10.1016/j.drudis.2015.02.008. PMID: 25728220.

32. Rothe A., Sasse S., Topp M.S. et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015;125(26):4024—31. DOI: 10.1182/blood-2014-12-614636. PMID: 25887777.

33. Thakur A., Lum L.G. “NextGen” biologics: bispecific antibodies and emerging clinical results. Expert Opin Biol Ther 2016;16(5):675-88. DOI: 10.1517/14712598.2016.1150996. PMID: 26848610.

34. Bargou R., Leo E., Zugmaier G. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008;321(5891):974-7. DOI: 10.1126/science.1158545. PMID: 18703743.

35. Nunez-Prado N., Compte M., Harwood S. et al. The coming of age of engineered multivalent antibodies. Drug Discov Today 2015;20(5):588—94. DOI: 10.1016/j.drudis.2015.02.013. PMID: 25757598.

36. Loffler A., Kufer P., LutterbUse R. et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000;95(6):2098—103. PMID: 10706880.

37. Wu J., Fu J., Zhang M., Liu D. Blinatu-momab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol 2015;8:104. DOI: 10.1186/s13045-015-0195-4. PMID: 26337639.

38. Goebeler M.E., Bargou R. Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma 2016;57(5):1021—32. DOI: 10.3109/10428194.2016.1161185. PMID: 27050240.

39. Topp M.S., Gokbuget N., Zugmaier G. et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 2012;120(26):5185-7. DOI: 10.1182/blood-2012-07-441030. PMID: 23024237.

40. Topp M.S., Gokbuget N., Zugmaier G. et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014;32(36):4134—40. DOI: 10.1200/JCO.2014.56.3247.

41. Topp M.S., Kufer P., Gokbuget N. et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free Survival. J Clin Oncol 2011;29(18):2493—8. DOI: 10.1200/JCO.2010.32.7270. PMID: 21576633.

42. Aldoss I., Song J., Stiller T. et al. Correlates of resistance and relapse during blina-tumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J He-matol 2017;92(9):858—65. DOI: 10.1002/ajh.24783. PMID: 28494518.

43. Klinger M., Brandl C., Zugmaier G. et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012;119(26):6226—33. DOI: 10.1182/blood-2012-01-400515. PMID: 22592608.

44. Frankel S.R., Baeuerle P.A. Targeting T cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol 2013;17(3):385—92. DOI: 10.1016/j.cbpa.2013.03.029. PMID: 23623807.

45. Heiss M.M., Murawa P., Koralewski P. et al. The trifunctional antibody catumax-omab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int J Cancer 2010;127(9):2209—21. DOI: 10.1002/ijc.25423. PMID: 20473913.

46. Seimetz D., Lindhofer H., Bokemeyer C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAMxanti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 2010;36(6):458—67. DOI: 10.1016/j.ctrv.2010.03.001.

47. Linke R., Klein A., Seimetz D. Catumaxomab: clinical development and future directions. MAbs 2010;2(2):129—36. DOI: 10.4161/mabs.2.2.11221. PMID: 20190561.

48. Chames P., Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 2009;1(6):539—47. PMID: 20073127.

49. Lindhofer H., Mocikat R., Steipe B., Thi-erfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 1995;155(1):219—25. PMID: 7602098.

50. Ruf P. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 2001;98(8):2526—34. DOI: 10.1182/blood.V98.8.2526. PMID: 11588051.

51. Ott M.G., Marme F., Moldenhauer G. et al. Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int J Cancer 2012;130(9):2195—203. DOI: 10.1002/ijc.26258. PMID: 21702044.

52. van der Neut Kolfschoten M., Schuurman J., Losen M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 2007;317(5844):1554-7. DOI: 10.1126/science.1144603. PMID: 17872445.

53. Labrijn A.F., Meesters J.I., de Goeij B.E. et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc Natl Acad Sci USA 2013;110(13):5145-50. DOI: 10.1073/pnas.1220145110. PMID: 23479652.

54. Patterson J.T., Gros E., Zhou H. et al. Chemically generated IgG2 bispecific antibodies through disulfide bridging. Bioorg Med Chem Lett 2017;27(16):3647—52. DOI: 10.1016/j.bmcl.2017.07.021. PMID: 28720505.

55. Sedykh S.E., Buneva V.N., Nevinsky G.A. Human milk IgGs contain various combinations of different antigen-binding sites resulting in multiple variants of their bispecificity. PloS One 2012;7(8):e42942. DOI: 10.1371/journal.pone.0042942. PMID: 22912765.

56. Sedykh S.E., Buneva V.N., Nevinsky G.A. Human milk sIgA molecules contain various combinations of different antigenbinding sites resulting in a multiple binding specificity of antibodies and enzymatic activities of abzymes. PloS One 2012;7(11):e48756. DOI: 10.1371/journal.pone.0048756. PMID: 23133657.

57. Sedykh S.E., Lekchnov E.A., Prince V.V. et al. Half molecular exchange of IgGs in the blood of healthy humans: chimeric lambda-kappa-immunoglobulins containing HL fragments of antibodies of different subclasses (IgG1–IgG4). Mol Biosyst 2016;12(10):3186–95. DOI: 10.1039/C6MB00479B. PMID: 27506137.

58. Labrijn A.F., Buijsse A.O., van den Bremer E.T.J. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 2009;27(8): 767–71. DOI: 10.1038/nbt.1553. PMID: 19620983.


Для цитирования:


Седых С.Е., Невинский Г.А. Cпособы получения и перспективы применения биспецифичных антител для лечения онкологических заболеваний. Успехи молекулярной онкологии. 2018;5(4):30-40. https://doi.org/10.17650/2313-805X-2018-5-4-30-40

For citation:


Sedykh S.E., Nevinsky G.A. Producing and prospects for the use of bispecific antibodies for the treatment of cancer. Advances in molecular oncology. 2018;5(4):30-40. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-4-30-40

Просмотров: 121


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)