Preview

Успехи молекулярной онкологии

Расширенный поиск

Влияние ДНК-тропных антиканцерогенных соединений на механизмы регуляции экспрессии генов

https://doi.org/10.17650/2313-805X-2018-5-4-41-63

Полный текст:

Аннотация

Обзор посвящен анализу молекулярных механизмов действия ряда природных ДНК-тропных соединений с установленной антиканцерогенной активностью. Приведены данные исследований антиканцерогенного действия этих соединений в экспериментах in vivo, рассмотрены механизмы их связывания с ДНК, влияния на метилирование ДНК и модификацию гистонов, способность к ингибированию функций ферментов «домашнего хозяйства». Кроме того, проанализированы возможные эффекты этих соединений на характеристики дуплекса ДНК, что должно иметь значение для эпигенетической регуляции экспрессии генов и формирования топологически ассоциированных доменов.

Об авторах

К. И. Кирсанов
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГАОУ ВО Российский университет дружбы народов
Россия

Кирилл Игоревич Кирсанов.

115478 Москва, Каширское шоссе, 24; 117198 Москва, ул. Миклухо-Маклая, 6



О. А. Власова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24



Т. И. Фетисов
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24



Р. Г. Зенков
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24



Е. А. Лесовая
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГБОУ ВО «Рязанский государственный медицинский университет им. И.П. Павлова» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24; 390026 Рязань, ул. Высоковольтная, 9



Г. А. Белицкий
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24



К. Гурова
Онкологический центр Розвел Парк
Соединённые Штаты Америки

Штат Нью Йорк



М. Г. Якубовская
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24



Список литературы

1. Wiseman M.J. Nutrition and cancer: prevention and survival. Br J Nutr 2018:1—7. DOI: 10.1017/S0007114518002222. PMID: 30213279.

2. Korkina L., Kostyuk V. Biotechnologically produced secondary plant metabolites for cancer treatment and prevention. Curr Pharm Biotechnol 2012;13(1):265—75. PMID: 21466424.

3. Delgoda R., Murray J.E. Evolutionary perspectives on the role of plant secondary metabolites. In: Pharmacognosy: Fundamentals, Applications and Strategies. 1st ed. Oxoford, UK: Academic Press, 2017. P. 93—100. D0I:10.1016/b9780128021040.00007x.

4. Белицкий Г.А., Кирсанов К.И., Лесо-вая Е.А., Якубовская М.Г. Механизмы антиканцерогенного действия флаво-ноидов 2014;1(1):56—68. DOI: 10.17650/2313805X.2014.1.1.5668.

5. Tungmunnithum D., Thongboonyou A., Pholboon A. et al. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 2018;5(3). DOI: 10.3390/medi-cines5030093. PMID: 30149600.

6. Nirmala P., Ramanathan M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharmacol 2011;654(1):75—9. DOI: 10.1016/j.ejphar.2010.11.034.

7. Guthrie N., Carroll K.K. Inhibition of mammary cancer by citrus flavonoids. Adv Exp Med Biol 1998;439:227-36.

8. Kochi T., Shimizu M., Shirakami Y et al. Utility of Apcmutant rats with a colitis-associated colon carcinogenesis model for chemoprevention studies. Eur J Cancer Prev 2015;24(3):180—7. DOI: 10.1097/CEJ.0000000000000063.

9. Lu L., Chen J., Tang H. et al. EGCG Suppresses ERK5 Activation to reverse tobacco smoketriggered gastric epithelialmesenchy-mal transition in BALB/c mice. Nutrients 2016;8(7). DOI: 10.3390/nu8070380.

10. Sur S., Pal D., Roy R. et al. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by Nnitrosodiethylamine in mice. Toxicol Appl Pharmacol 2016;300:34-46. DOI: 10.1016/j.taap.2016.03.016.

11. Sur S., Pal D., Mandal S. et al. Tea polyphenols epigallocatechin gallete and theaflavin restrict mouse liver carcinogenesis through modulation of selfrenewal Wnt and hedgehog pathways. J Nutr Bio-chem 2016;27:32-42. DOI: 10.1016/j.jnutbio.2015.08.016.

12. Yao K., Chen H., Liu K. et al. Kaempferol targets RSK2 and MSK1 to suppress UV radiationinduced skin cancer. Cancer Prev Res (Phila) 2014;7(9):958-67. DOI: 10.1158/19406207.CAPR140126.

13. Saleem T.H., Attya A.M., Ahmed E.A. et al. Possible Protective effects of quercetin and sodium gluconate against colon cancer induction by dimethylhydrazine in mice. Asian Pac J Cancer Prev 2015;16(14):5823—8.

14. Liu Y., Wu Y.M., Zhang P.Y. Protective effects of curcumin and quercetin during benzo(a)pyrene induced lung carcinogenesis in mice. Eur Rev Med Pharmacol Sci 2015;19(9):1736—43.

15. Ali H., Dixit S. Quercetin attenuates the development of 7, 12dimethyl benz(a) anthracene (DMBA) and croton oil-induced skin cancer in mice. J Biomed Res 2015;29(2):139—44. DOI: 10.7555/JBR.29.20130025.

16. Firdous A.B., Sharmila G., Balakrishnan S. et al. Quercetin, a natural dietary flavo-noid, acts as a chemopreventive agent against prostate cancer in an in vivo model by inhibiting the EGFR signaling pathway. Food Funct 2014;5(10):2632—45. DOI: 10.1039/c4fo00255e.

17. Kim J.A., Lee S., Kim D.E. et al. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter. Carcinogenesis 2015;36(6): 696-706. DOI: 10.1093/carcin/bgv045.

18. So F.V., Guthrie N., Chambers A.F. et al. Inhibition of human breast cancer cell proliferation and delay of mammary tu. morigenesis by flavonoids and citrus juices. Nutr Cancer 1996;26(2):167-81. DOI: 10.1080/01635589609514473.

19. Rehman M.U., Rahman Mir M.U., Farooq A. et al. Naringenin (4,5,7 trihydroxyflavanone) suppresses the development of precancerous lesions via controlling hyperproliferation and inflammation in the colon of Wistar rats. Environ Toxicol 2018;33(4):422-35. DOI: 10.1002/tox.22528.

20. Krishnakumar N., Sulfikkarali N.K., Manoharan S. et al. Raman spectroscopic ® investigation of the chemopreventive response of naringenin and its nanoparticles in DMBAinduced oral carcinogenesis. Spectrochim Acta A Mol Biomol Spectrosc 2013;115:648-53. DOI: 10.1016/j. saa.2013.05.076.

21. Ekambaram G., Rajendran P., Devaraja R. et al. Impact of naringenin on glycoprotein levels in NmethylN'nitroN-nitrosoguanidineinduced gastric carcinogenesis in rats. Anticancer Drugs 2008;19(9): 885-90. DOI: 10.1097/CAD.0b013e32830ea1bc.

22. BaldasquinCaceres B., GomezGarcia F.J., LopezJornet P. et al. Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch Oral Biol 2014;59(10):1101—7. DOI: 10.1016/j.ar-choralbio.2014.06.007.

23. Huderson A.C., Rekha Devi P.V., Niaz M.S. et al. Alteration of benzo(a)pyrene biotransformation by resveratrol in Apc (Min/+) mouse model of colon carcinogenesis. Invest New Drugs 2018. DOI: 10.1007/s1063701806229.

24. Zheng X., Jia B., Song X. et al. Preventive potential of resveratrol in carcinogen-induced rat thyroid tumorigenesis. Nutrients 2018;10(3). DOI: 10.3390/nu10030279.

25. Kooi O.K., Ling C.Y., Rodzi R. et al. Che-mopreventive activity of methanol extract of Melastoma malabathricum leaves in DMBAinduced mouse skin carcinogenesis. Afr J Tradit Complement Altern Med 2014;11(4):66—70.

26. Baskaran N., Manoharan S., Karthikeyan S. et al. Chemopreventive potential of cou-marin in 7,12 dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Asian Pac J Cancer Prev 2012;13(10):5273-9.

27. Prince M., Campbell C.T., Robertson T.A. et al. Naturally occurring coumarins inhibit 7,12dimethylbenz[a]anthracene DNA adduct formation in mouse mammary gland. Carcinogenesis 2006;27(6):1204—13. DOI: 10.1093/car-cin/bgi303.

28. Constantinou A.I., Mehta R.G., Vaughan A. Inhibition of NmethylNnitrosourea-induced mammary tumors in rats by the soybean isoflavones. Anticancer Res 1996;16(6A):3293-8.

29. Lamartiniere C.A., Zhang J.X., Cotro-neo M.S. Genistein studies in rats: potential for breast cancer prevention and reproductive and developmental toxicity. Am J Clin Nutr 1998;68(6 Suppl):1400S-5S. DOI: 10.1093/ajcn/68.6.1400S.

30. Kumar A., Kumar M., Panwar M. et al. Evaluation of chemopreventive action of Ginsenoside Rp1. Biofactors 2006;26(1):29-43.

31. Kensara O.A., ElShemi A.G., Moha-med A.M. et al. Thymoquinone subdues tumor growth and potentiates the chemo-preventive effect of 5fluorouracil on the early stages of colorectal carcinogenesis in rats. Drug Des Devel Ther 2016;10:2239-53. DOI: 10.2147/DDDT.S109721.

32. Mohamed A.M., Refaat BA., ElShemi A.G. et al. Thymoquinone potentiates chemo-protective effect of Vitamin D3 against colon cancer: a preclinical finding. Am J Transl Res 2017;9(2):774-90.

33. Rajkamal G., Suresh K., Sugunadevi G. et al. Evaluation of chemopreventive effects of Thymoquinone on cell surface gly-coconjugates and cytokeratin expression during DMBA induced hamster buccal pouch carcinogenesis. BMB Rep 2010;43(10):664—9. DOI: 10.5483/BMBRep.2010.43.10.664.

34. Cao H., Song S., Zhang H. et al. Chemopreventive effects of berberine on intestinal tumor development in Apcmin/+ mice. BMC Gastroenterol 2013;13:163. DOI: 10.1186/1471230X13163.

35. Manoharan S., Sindhu G., Vinothkumar V. et al. Berberine prevents 7,12dimethylbenz[a]anthraceneinduced hamster buccal pouch carcinogenesis: a biochemical approach. Eur J Cancer Prev 2012;21(2):182—92. DOI: 10.1097/CEJ.0b013e32834c9c3c.

36. James M.A., Fu H., Liu Y. et al. Dietary administration of berberine or Phelloden-dron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol Carcinog 2011;50(1):1 —7. DOI: 10.1002/mc.20690.

37. Hsieh C.Y., Santell R.C., Haslam S.Z. et al. Estrogenic effects of genistein on the growth of estrogen receptorpositive human breast cancer (MCF7) cells in vitro and in vivo. Cancer Res 1998;58(17):3833—8.

38. Ghosh K.S., Sahoo B.K., Jana D. et al. Studies on the interaction of copper complexes of (-)epicatechin gallate and (-)epigallocatechin gallate with calf thymus DNA. J Inorg Biochem 2008;102(9):1711—8. DOI: 10.1016/j.jinorgbio.2008.04.008.

39. Ghadirian P., Boyle P., Simard A. et al. Reported family aggregation of pancreatic cancer within a populationbased case-control study in the Francophone community in Montreal, Canada. Int J Pancreatol 1991;10(3—4):183—96.

40. Kanakis C.D., Tarantilis PA, Polissiou M.G. et al. DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. J Biomol Struct Dyn 2005;22(6):719—24. DOI: 10.1080/07391102.2005.10507038.

41. Nafisi S., Hashemi M., Rajabi M. et al. DNA adducts with antioxidant flavonoids: morin, apigenin, and naringin. DNA Cell Biol 2008;27(8):433-42. DOI: 10.1089/dna.2008.0735.

42. Li H., Yu Y.Y., Hu X. et al. Research on the interactions between genistein and its glucosides with DNA. Guang Pu Xue Yu Guang Pu Fen Xi 2008;28(8):1905-9.

43. Zhang S., Sun X., Jing Z. et al. Spectroscopic analysis on the resveratrolDNA binding interactions at physiological pH. Spectrochim Acta A Mol Biomol Spec-trosc 2011;82(1):213—6. DOI: 10.1016/j.saa.2011.07.037.

44. Zsila F., Bikadi Z., Simonyi M. Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Org Biomol Chem 2004;2(20):2902-10. DOI: 10.1039/B409724F.

45. Rehman S.U., Sarwar T., Husain M.A. et al. Studying noncovalent drugDNA interactions. Arch Biochem Biophys 2015;576:49-60. DOI: 10.1016/j.abb.2015.03.024.

46. Mikutis G., Karakose H., Jaiswal R. et al. Phenolic promiscuity in the cell nucleus — epigallocatechingallate (EGCG) and theaflavin3,3'digallate from green and black tea bind to model cell nuclear structures including histone proteins, double stranded DNA and telomeric quadruplex DNA. Food Funct 2013;4(2):328-37. DOI: 10.1039/c2fo30159h.

47. Bhattacharjee S., Chakraborty S., Sengup-ta P.K. et al. Exploring the interactions of the dietary plant flavonoids fisetin and naringenin with gquadruplex and duplex DNA, showing contrasting binding behavior: spectroscopic and molecular modeling approaches. J Phys Chem B 2016;120(34):8942—52. DOI: 10.1021/acs.jpcb.6b06357.

48. Pattanayak R., Basak P., Sen S. et al. Interaction of KRAS Gquadruplex with natural polyphenols: a spectroscopic analysis with molecular modeling. Int J Biol Macromol 2016;89:228-37. DOI: 10.1016/j.ijbiomac.2016.04.074.

49. Salem A.A., El Haty I.A., Abdou I.M. et al. Interaction of human telomeric Gquadruplex DNA with thymoquinone: a possible mechanism for thymoquinone anticancer effect. Biochim Biophys Acta 2015;1850(2):329—42. DOI: 10.1016/j.bbagen.2014.10.018.

50. Wen L.N., Xie M.X. Spectroscopic investigation of the interaction between Gquadruplex of KRAS promoter sequence and three isoquinoline alkaloids. Spectro-chim Acta A Mol Biomol Spectrosc 2017;171:287-96. DOI: 10.1016/j.saa.2016.08.013.

51. Singh S., Awasthi M., Pandey V.P. et al. Plant derived anticancerous secondary metabolites as multipronged inhibitor of COX, Topo, and aromatase: molecular modeling and dynamics simulation analyses. J Biomol Struct Dyn 2017;35(14):3082-97. DOI: 10.1080/07391102.2016.1241720.

52. LopezLazaro M., Willmore E., Jobson A. et al. Curcumin induces high levels of topoisomerase I and IIDNA complexes in K562 leukemia cells. J Nat Prod 2007;70(12):1884-8. DOI: 10.1021/np070332i.

53. Kumar A., Bora U. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and IIDNA complexes. Interdiscip Sci 2014;6(4): 285—91. DOI: 10.1007/s1253901200486.

54. Boege F., Straub T., Kehr A. et al. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J Biol Chem 1996;271(4):2262—70.

55. Cantero G., Campanella C., Mateos S. et al. Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. Mutagenesis 2006;21(5):321—5. DOI: 10.1093/mutage/gel033.

56. Azuma Y., Onishi Y., Sato Y. et al. Effects of protein tyrosine kinase inhibitors with different modes of action on topoisomerase activity and death of IL2dependent CTLL2 cells. J Biochem 1995;118(2):312—8.

57. LopezLazaro M., Willmore E., Austin C.A. The dietary flavonoids myricetin and fise-tin act as dual inhibitors of DNA topoi-somerases I and II in cells. Mutat Res 2010;696(1):41—7. DOI: 10.1016/j.mrgentox.2009.12.010.

58. Demoulin B., Hermant M., Castrogiovan-ni C. et al. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase II and activates the ATM kinase to trigger p53dependent apoptosis. Toxicol In Vitro 2015;29(5):1156—65. DOI: 10.1016/j.tiv.2015.04.015.

59. Ashley R.E., Osheroff N. Natural products as topoisomerase II poisons: effects of thymoquinone on DNA cleavage mediated by human topoisomerase IIalpha. Chem Res Toxicol 2014;27(5):787—93. DOI: 10.1021/tx400453v.

60. Ravindranath M.H., Muthugounder S., Presser N. et al. Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol 2004;546:121—65.

61. Timmel M.A., Byl J.A., Osheroff N. Epimerization of green tea catechins during brewing does not affect the ability to poison human type II topoisomerases. Chem Res Toxicol 2013;26(4):622—8. DOI: 10.1021/tx4000667.

62. Topcu Z., Ozturk B., Kucukoglu O. et al. Flavonoids in Helichrysum pamphylicum inhibit m^alian type I DNA topoisomerase. Z Naturforsch C 2008;63(1—2): 69—74.

63. Selvi B.R., Pradhan S.K., Shandilya J. et al. Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. Chem Biol 2009;16(2):203—16. DOI: 10.1016/j.chembiol.2008.12.006.

64. GalindoMurillo R., Cheatham T.E. 3rd. Computational DNA binding studies of (—)epigallocatechin3gallate. J Biomol Struct Dyn 2017:1—13. DOI: 10.1080/07391102.2017.1389306.

65. Tawani A., Mishra S.K., Kumar A. Structural insight for the recognition of Gquadruplex structure at human cmyc promoter sequence by flavonoid Quercetin. Sci Rep 2017;7(1):3600. DOI: 10.1038/s41598017039063.

66. Mitrasinovic P.M. Sequencedependent binding of flavonoids to duplex DNA. J Chem Inf Model 2015;55(2):421—33. DOI: 10.1021/ci5006965.

67. Sengupta B., Pahari B., Blackmon L. et al. Prospect of bioflavonoid fisetin as a qua-druplex DNA ligand: a biophysical approach. PLoS One 2013;8(6):e65383. DOI: 10.1371/journal.pone.0065383.

68. Kanwal R., Datt M., Liu X. et al. Dietary flavones as dual inhibitors of DNA methyl-transferases and histone methyltransferases. PLoS One 2016;11(9):e0162956. DOI: 10.1371/journal.pone.0162956.

69. Banerjee A., Singh J., Dasgupta D. Fluorescence spectroscopic and calorimetry based approaches to characterize the mode of interaction of small molecules with DNA. J Fluoresc 2013;23(4):745—52. DOI: 10.1007/s1089501312110.

70. Basu A., Kumar G.S. Biophysical studies on curcumindeoxyribonucleic acid interaction: spectroscopic and calorimetric approach. Int J Biol Macromol 2013;62:257— 64. DOI: 10.1016/j.ijbiomac.2013.09.003.

71. Sun H., Fan H., Peng X. Quantitative DNA interstrand crosslink formation by coumarin and thymine: structure determination, sequence effect, and fluorescence detection. J Org Chem 2014;79(23):11359—69. DOI: 10.1021/jo5014756.

72. Wu D., Chen Z. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques. Luminescence 2015;30(8):1212—8. DOI: 10.1002/bio.2883.

73. Li X.L., Hu Y.J., Wang H. et al. Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 2012;13(3):873—80. DOI: 10.1021/bm2017959.

74. Ferraroni M., Bazzicalupi C., Bilia A.R. et al. XRay diffraction analyses of the natural isoquinoline alkaloids Berberine and Sanguinarine complexed with double helix DNA d(CGTACG). Chem Commun (Camb) 2011;47(17):4917—9. DOI: 10.1039/c1cc10971e.

75. Mazzini S., Bellucci M.C., Mondelli R. Mode of binding of the cytotoxic alkaloid berberine with the double helix oligonucleotide d(AAGAATTCTT)(2). Bioorg Med Chem 2003;11(4):505—14.

76. RabbaniChadegani A., Mollaei H., Sar-golzaei J. Investigation of the interaction between berberine and nucleosomes in solution: spectroscopic and equilibrium dialysis approach. Spectrochim Acta A Mol Biomol Spectrosc 2017;173:418—24. DOI: 10.1016/j.saa.2016.09.052.

77. Lee W.J., Shim J.Y., Zhu B.T. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 2005;68(4):1018—30. DOI: 10.1124/mol.104.008367.

78. Parashar G., Parashar N.C., Capalash N. Curcumin causes promoter hypomethyl-ation and increased expression of FANCF gene in SiHa cell line. Mol Cell Biochem 2012;365(1—2):29—35. DOI: 10.1007/s110100121240z.

79. Pang J., Shen N., Yan F. et al. Thymoqui-none exerts potent growthsuppressive activity on leukemia through DNA hyper-methylation reversal in leukemia cells. Oncotarget 2017;8(21):34453—67. DOI: 10.18632/oncotarget.16431.

80. Nandakumar V., Vaid M., Katiyar S.K. (—)Epigallocatechin3gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA meth-ylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 2011;32(4):537—44. DOI: 10.1093/carcin/bgq285.

81. Qiu W., Lin J., Zhu Y. et al. Kaempferol modulates DNA methylation and down-regulates DNMT3B in bladder cancer. Cell Physiol Biochem 2017;41(4): 1325—35. DOI: 10.1159/000464435.

82. ParedesGonzalez X., Fuentes F., Su Z.Y. et al. Apigenin reactivates Nrf2 antioxidative stress signaling in mouse skin epidermal JB6 P + cells through epigenetics modifications. AAPS J 2014;16(4):727—35. DOI: 10.1208/s1224801496138.

83. Qing Y., Hu H., Liu Y. et al. Berberine induces apoptosis in human multiple myeloma cell line U266 through hypomethylation of p53 promoter. Cell Biol Int 2014;38(5):563—70.

84. Moseley V.R., Morris J., Knackstedt R.W. et al. Green tea polyphenol epigallocate-chin 3gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells. Anticancer Res 2013;33(12):5325—33.

85. Berger A., Venturelli S., Kallnischkies M. et al. Kaempferol, a new nutritionderived paninhibitor of human histone deacetylases. J Nutr Biochem 2013;24(6):977—85. DOI: 10.1016/j.jnutbio.2012.07.001.

86. Pandey M., Kaur P., Shukla S. et al. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog 2012;51(12):952—62. DOI: 10.1002/mc.20866.

87. Collins H.M., Abdelghany M.K., Mess-mer M. et al. Differential effects of garcin-ol and curcumin on histone and p53 modifications in tumour cells. BMC Cancer 2013;13:37. DOI: 10.1186/147124071337.

88. Abdulla A., Zhao X., Yang F. Natural polyphenols inhibit lysinespecific demethylase 1 in vitro. J Biochem Pharmacol Res 2013;1(1):56—63.

89. Khan M.A., Hussain A., Sundaram M.K. et al. (—)Epigallocatechin3gallate reverses the expression of various tumorsuppressor |i; genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep 2015;33(4):1976—84. DOI: 10.3892/or.2015.3802.

90. Xiao X., Shi D., Liu L. et al. Quercetin suppresses cyclooxygenase2 expression and angiogenesis through inactivation of P300 signaling. PLoS One 2011;6(8):e22934. DOI: 10.1371/journal.pone.0022934.

91. Salmela A.L., Pouwels J., Varis A. et al. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint. Carcinogenesis 2009;30(6):1032—40. DOI: 10.1093/car-cin/bgp101.

92. Smith M.L., Murphy K., Doucette C.D. et al. The dietary flavonoid fisetin causes cell cycle arrest, caspasedependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triplenegative breast cancer cells. J Cell Biochem 2016;117(8):1913—25. DOI: 10.1002/jcb.25490.

93. Kim H.J., Kim S.H., Yun J.M. Fisetin inhibits hyperglycemiainduced proinflammatory cytokine production by epigenetic mechanisms. Evid Based Complement Alternat Med 2012;2012:639469. DOI: 10.1155/2012/639469.

94. Tseng T.H., Chien M.H., Lin W.L. et al. Inhibition of MDAMB231 breast cancer cell proliferation and tumor growth by api-genin through induction of G2/M arrest and histone H3 acetylationmediated p21(WAF1/CIP1) expression. Environ Toxicol 2017;32(2):434—44. DOI: 10.1002/tox.22247.

95. Qin W., Zhang K., Clarke K. et al. Me-thylation and miRNA effects of resveratrol on mammary tumors vs normal tissue. Nutr Cancer 2014;66(2):270—7. DOI: 10.1080/01635581.2014.868910.

96. Lee S.J., Krauthauser C., Maduskuie V. et al. Curcumininduced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 2011;11:144. DOI: 10.1186/1471240711144.

97. Roy M., Mukherjee S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev 2014;15(3):1403—10.

98. Sanaei M., Kavoosi F., Roustazadeh A. et al. Effect of genistein in comparison with trichostatin A on reactivation of DNMTs Genes in hepatocellular carcinoma. J Clin Transl Hepatol 2018;6(2):141—6. DOI: 10.14218/JCTH.2018.00002.

99. Sundaram M.K., Ansari M.Z., Al Mutery A. et al. Genistein induces alterations of epigenetic modulatory signatures in human cervical cancer cells. Anticancer Agents Med Chem 2018;18(3):412—21. DOI: 10.2 174/1871520617666170918142114.

100. Xie Q., Bai Q., Zou L.Y. et al. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer 2014;53(5):422—31. DOI: 10.1002/gcc.22154.

101. KarsliCeppioglu S., Ngollo M., Adjakly M. et al. Genomewide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer? OMICS 2015;19(4):209—19. DOI: 10.1089/omi.2014.0142.

102. Majid S., Dar A.A., Shahryari V. et al. Ge-nistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene BCell translocation gene 3 in prostate cancer. Cancer 2010;116(1):66— 76. DOI: 10.1002/cncr.24662.

103. Majid S., Dar A.A., Ahmad A.E. et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 2009;30(4):662—70. DOI: 10.1093/carcin/bgp042.

104. Dagdemir A., Durif J., Ngollo M. et al. Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or antiHDAC in breast cancer cell lines. Epigenomics 2013;5(1):51—63. DOI: 10.2217/epi.12.74.

105. Relles D., Chipitsyna G.I., Gong Q. et al. Thymoquinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation. Adv Prev Med 2016;2016:1407840. DOI: 10.1155/2016/1407840.

106. Attoub S., Sperandio O., Raza H. et al. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol 2013;27(5):557—69. DOI: 10.1111/j.14728206.2012.01056.x.

107. Shahabipour F., Caraglia M., Majeed M. et al. Naturally occurring anticancer agents targeting EZH2. Cancer Lett 2017;400:325-35. DOI: 10.1016/j.can-let.2017.03.020.

108. Kalaiarasi A., Anusha C., Sankar R. et al. Plant isoquinoline alkaloid berberine exhibits chromatin remodeling by modulation of histone deacetylase to induce growth arrest and apoptosis in the A549 cell line. J Agric Food Chem 2016;64(50):9542—50. DOI: 10.1021/acs.jafc.6b04453.

109. Kim E.K., Choi E.J. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015;89(6):867—82. DOI: 10.1007/s0020401514722.

110. Burotto M., Chiou V.L., Lee J.M. et al. The MAPK pathway across different malignancies: a new perspective. Cancer 2014;120(22):3446— 56. DOI: 10.1002/cncr.28864.

111. Spencer J.P., RiceEvans C., Williams R.J. Modulation of prosurvival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 2003;278(37):34783—93. DOI: 10.1074/jbc.M305063200.

112. Chun K.S., Keum Y.S., Han S.S. et al. Curcumin inhibits phorbol esterinduced expression of cyclooxygenase2 in mouse skin through suppression of extracellular signalregulated kinase activity and NFkappaB activation. Carcinogenesis 2003;24(9):1515—24. DOI: 10.1093/car-cin/bgg107.

113. Andrews C.S., Matsuyama S., Lee B.C. et al. Resveratrol suppresses NTHiinduced inflammation via upregulation of the negative regulator MyD88 short. Sci Rep 2016;6:34445. DOI: 10.1038/srep34445.

114. Vinod B.S., Nair H.H., Vijayakurup V. et al. Resveratrol chemosensitizes HER2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxelmediated activation of HER2Akt axis. Cell Death Discov 2015;1:15061. DOI: 10.1038/cddiscovery.2015.61.

115. Huang W., Wan C., Luo Q. et al. Genisteininhibited cancer stem celllike properties and reduced chemoresistance of gastric cancer. Int J Mol Sci 2014;15(3):3432—43. DOI: 10.3390/ijms15033432.

116. Pal H.C., Sharma S., Strickland L.R. et al. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFkappaB signaling pathways. PLoS One 2014;9(1):e86338. DOI: 10.1371/journal.pone.0086338.

117. Luo H., Rankin G.O., Juliano N. et al. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFkappaBcMycp21 pathway. Food Chem 2012;130(2):321—8. DOI: 10.1016/j.food-chem.2011.07.045.

118. Shankar S., Marsh L., Srivastava R.K. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol Cell Biochem 2013;372(1-2):83-94. DOI: 10.1007/s110100121448y.

119. De Stefano I., Raspaglio G., Zannoni G.F. et al. Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem Pharmacol 2009;78(11):1374-81. DOI: 10.1016/j.bcp.2009.07.011.

120. Chen M.C., Lee N.H., Hsu H.H. et al. Inhibition of NFkappaB and metastasis in irinotecan (CPT11)resistant LoVo colon cancer cells by thymoquinone via JNK and p38. Environ Toxicol 2017;32(2): 669-78. DOI: 10.1002/tox.22268.

121. Hamsa T.P., Kuttan G. Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F10 melanoma cells. Phytother Res 2012;26(4):568—78. DOI: 10.1002/ptr.3586.

122. Hou D.X., Kumamoto T. Flavonoids as protein kinase inhibitors for cancer che-moprevention: direct binding and molecular modeling. Antioxid Redox Signal 2010;13(5):691—719. DOI: 10.1089/ars.2009.2816.

123. Aoki H., Takada Y., Kondo S. et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signalregulated kinase signaling pathways. Mol Pharmacol 2007;72(1):29—39. DOI: 10.1124/mol.106.033167.

124. Parekh P., Motiwale L., Naik N. et al. Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreven-tive effects of resveratrol in liver cancer cells. Exp Toxicol Pathol 2011;63(1—2): 167-73. DOI: 10.1016/j.etp.2009.11.005.

125. Pallichankandy S., Rahman A., Thayyul-lathil F. et al. ROSdependent activation of autophagy is a critical mechanism for the induction of antiglioma effect of san-guinarine. Free Radic Biol Med 2015;89:708-20. DOI: 10.1016/j.freerad-biomed.2015.10.404.

126. Lee B., Lee S.J., Park S.S. et al. Sanguinarineinduced G1phase arrest of the cell cycle results from increased p27KIP1 expression mediated via activation of the Ras/ERK signaling pathway in vascular smooth muscle cells. Arch Biochem Biophys 2008;471(2):224—31. DOI: 10.1016/j.abb.2008.01.008.

127. Ishikawa Y., Kitamura M. Antiapoptotic effect of quercetin: intervention in the JNK and ERKmediated apoptotic pathways. Kidney Int 2000;58(3):1078—87. DOI: 10.1046/j.15231755.2000.00265.x.

128. Chen Y.R., Tan T.H. Inhibition of the cJun Nterminal kinase (JNK) signaling pathway by curcumin. Oncogene 1998;17(2):173—8. DOI: 10.1038/sj.onc.1201941.

129. Chien C.S., Shen K.H., Huang J.S. et al. Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP2/9 expressions in prostate cancer PC3 cells. Mol Cell Biochem 2010; 333(1—2):169—80. DOI: 10.1007/s11010-0090217z.

130. Chou R.H., Hsieh S.C., Yu Y.L. et al. Fisetin inhibits migration and invasion of human cervical cancer cells by downregulating urokinase plasminogen activator expression through suppressing the p38 MAPKdependent NFkappaB signaling pathway. PLoS One 2013;8(8):e71983. DOI: 10.1371/journal.pone.0071983.

131. Noh E.M., Park YJ., Kim J.M. et al. Fisetin regulates TPAinduced breast cell invasion by suppressing matrix metalloproteinase9 activation via the PKC/ROS/MAPK pathways. Eur J Pharmacol 2015;764:79-86. DOI: 10.1016/j.ejphar.2015.06.038.

132. Koh Y.W., Choi E.C., Kang S.U. et al. Green tea (—)epigallocatechin3gallate inhibits HGFinduced progression in oral cavity cancer through suppression of HGF/cMet. J Nutr Biochem 2011;22(11):1074—83. DOI: 10.1016/j.jnutbio.2010.09.005.

133. Han M.H., Kim G.Y., Yoo Y.H. et al. Sanguinarine induces apoptosis in human colorectal cancer HCT116 cells through ROSmediated Egr1 activation and mitochondrial dysfunction. Toxicol Lett 2013;220(2):157—66. DOI: 10.1016/j.tox-let.2013.04.020.

134. Ramakrishnan A.B., Cadigan K.M. Wnt target genes and where to find them. F1000Res 2017;6:746. DOI: 10.12688/f1000research.11034.1.

135. Ji Q., Liu X., Fu X. et al. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/ betacatenin signal pathway. PLoS One 2013;8(11):e78700. DOI: 10.1371/journal.pone.0078700.

136. Wang H., Li Q., Chen H. Genistein affects histone modifications on Dickkopf-related protein 1 (DKK1) gene in SW480 human colon cancer cell line. PLoS One 2012;7(7):e40955. DOI: 10.1371/journal.pone.0040955.

137. Xu M., Wang S., Song Y.U. et al. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/betacatenin signaling pathway. Oncol Lett 2016;11(5):3075—80. DOI: 10.3892/ol.2016.4331.

138. Suh Y., Afaq F., Johnson J.J. et al. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NFkappaBsignaling pathways. Carcinogenesis 2009;30(2):300-7. DOI: 10.1093/carcin/bgn269.

139. Thangapazham R.L., Passi N., Mahesh-wari R.K. Green tea polyphenol and epigal-locatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol Ther 2007;6(12):1938-43.

140. Hsu H.H., Chen M.C., Day C.H. et al. Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX2 activation. World J Gastroenterol 2017;23(7):1171—9. DOI: 10.3748/wjg.v23.i7.1171.

141. Albring K.F., Weidemuller J., Mittag S. et al. Berberine acts as a natural inhibitor of Wnt/betacatenin signaling — identification of more active 13arylalkyl derivatives. Biofactors 2013;39(6):652—62. DOI: 10.1002/biof.1133.

142. Park S., Choi J. Inhibition of betacatenin/ Tcf signaling by flavonoids. J Cell Biochem 2010;110(6):1376—85. DOI: 10.1002/jcb.22654.

143. Shan B.E., Wang M.X., Li R.Q. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/betacatenin signaling pathway. Cancer Invest 2009;27(6):604-12. DOI: 10.1080/07357900802337191.

144. Zhang Z., Chen H., Xu C. et al. Curcumin inhibits tumor epithelialmesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells. Oncol Rep 2016;35(5):2615—23. DOI: 10.3892/or.2016.4669.

145. Yang J., Fang Z., Wu J. et al. Construction and application of a lung cancer stem cell model: antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine. Tumour Biol 2016;37(10):13871 —83. DOI: 10.1007/s1327701651525.

146. Cilibrasi C., Riva G., Romano G. et al. Resveratrol impairs glioma stem cells proliferation and motility by modulating the wnt signaling pathway. PLoS One 2017;12(1):e0169854. DOI: 10.1371/journal.pone.0169854.

147. Lin C.M., Chen H.H., Lin C.A. et al. Apigenininduced lysosomal degradation of betacatenin in Wnt/betacatenin signaling. Sci Rep 2017;7(1):372. DOI: 10.1038/s4159801700409z.

148. Yu J.S., Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016;143(17):3050—60. DOI: 10.1242/dev.137075.

149. Walker E.H., Pacold M.E., Perisic O. et al. Structural determinants of phosphoinositide 3kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and stau-rosporine. Mol Cell 2000;6(4):909—19.

150. Zhou C., Ding J., Wu Y. Resveratrol induces apoptosis of bladder cancer cells via miR21 regulation of the Akt/Bcl2 signaling pathway. Mol Med Rep 2014;9(4): 1467-73. DOI: 10.3892/mmr.2014.1950.

151. Liu Y.L., Zhang G.Q., Yang Y. et al. GeE nistein induces G2/M arrest in gastric cancer cells by increasing the tumor suppressor PTEN expression. Nutr Cancer 2013;65(7):1034-41. DOI: 10.1080/01635581.2013.810290.

152. Zhao G., Han X., Cheng W. et al. Apigen-in inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol Rep 2017;37(4):2277-85. DOI: 10.3892/or.2017.5450.

153. Park J.H., Jin C.Y., Lee B.K. et al. Narin-genin induces apoptosis through downreg-ulation of Akt and caspase3 activation in human leukemia THP1 cells. Food Chem Toxicol 2008;46(12):3684-90. DOI: 10.1016/j.fct.2008.09.056.

154. Khan N., Afaq F., Khusro F.H. et al. Dual inhibition of phosphatidylinositol 3kinase/ Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer 2012;130(7):1695-705. DOI: 10.1002/ijc.26178.

155. Luo H., Rankin G.O., Liu L. et al. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer 2009;61(4):554-63. DOI: 10.1080/01635580802666281.

156. Guerra B. Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol 2006;28(3):685—93.

157. Lolli G., Cozza G., Mazzorana M. et al. Inhibition of protein kinase CK2 by flavo-noids and tyrphostins. A structural insight. Biochemistry 2012;51(31):6097—107. DOI: 10.1021/bi300531c.

158. Tong X., Pelling J.C. Targeting the PI3K/ Akt/mTOR axis by apigenin for cancer prevention. Anticancer Agents Med Chem 2013;13(7):971—8.

159. Beevers C.S., Chen L., Liu L. et al. Cur-cumin disrupts the Mammalian target of rapamycinraptor complex. Cancer Res 2009;69(3):1000—8. DOI: 10.1158/0008-5472.CAN082367.

160. Liu Y., Tong L., Luo Y. et al. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/ mTOR signaling pathway. J Cell Biochem 2018;119(7):6162—72. DOI: 10.1002/jcb.26822.

161. Hoesel B., Schmid J.A. The complexity of NFkappaB signaling in inflammation and cancer. Mol Cancer 2013;12:86. DOI: 10.1186/147645981286.

162. Vidya Priyadarsini R., Senthil Murugan R., Maitreyi S. et al. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NFkappaB inhibition. Eur J Pharmacol 2010;649(1—3):84—91. DOI: 10.1016/j.ejphar.2010.09.020.

163. Plummer S.M., Holloway K.A., Man-son M.M. et al. Inhibition of cyclooxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NFkappaB activation via the NIK/IKK signalling complex. Oncogene 1999;18(44):6013—20. DOI: 10.1038/sj.onc.1202980.

164. Cianciulli A., Calvello R., Cavallo P. et al. Modulation of NFkappaB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX2 expression. Toxicol In Vitro 2012;26(7):1122—8. DOI: 10.1016/j.tiv.2012.06.015.

165. Li Y.S., Wu L.P., Li K.H. et al. Involvement of nuclear factor kappaB (NFkappaB) in the downregulation of cyclooxygenase2 (COX2) by genistein in gastric cancer cells. J Int Med Res 2011;39(6):2141—50. DOI: 10.1177/147323001103900610.

166. Shukla S., Kanwal R., Shankar E. et al. Apigenin blocks IKKalpha activation and suppresses prostate cancer progression. Oncotarget 2015;6(31):31216—32. DOI: 10.18632/oncotarget.5157.

167. Subramanian P., Arul D. Attenuation of NDEAinduced hepatocarcinogenesis by naringenin in rats. Cell Biochem Funct 2013;31(6):511—7. DOI: 10.1002/cbf.2929.

168. Lee S., Kim Y.J., Kwon S. et al. Inhibitory effects of flavonoids on TNFalphainduced IL8 gene expression in HEK 293 cells. BMB Rep 2009;42(5):265—70.

169. Chen L., Zhang H.Y. Cancer preventive mechanisms of the green tea polyphenol (—)epigaUocatechin3gallate. Molecules 2007;12(5):946—57.

170. Park S.Y., Jin M.L., Kim Y.H. et al. San-guinarine inhibits invasiveness and the MMP9 and COX2 expression in TPA-induced breast cancer cells by inducing HO1 expression. Oncol Rep 2014;31(1): 497—504. DOI: 10.3892/or.2013.2843.

171. Sakalar C., Yuruk M., Kaya T. et al. Pronounced transcriptional regulation of apoptotic and TNFNFkappaB signaling genes during the course of thymoquinone mediated apoptosis in HeLa cells. Mol Cell Biochem 2013;383(1—2): 243—51. DOI: 10.1007/s110100131772x.

172. Yu M., Tong X., Qi B. et al. Berberine enhances chemosensitivity to irinotecan in colon cancer via inhibition of NFkappaB. Mol Med Rep 2014;9(1):249—54. DOI: 10.3892/mmr.2013.1762.

173. Peet G.W., Li J. IkappaB kinases alpha and beta show a random sequential kinetic mechanism and are inhibited by stauro-sporine and quercetin. J Biol Chem 1999;274(46):32655—61.

174. Wang Z., Li Y., Ahmad A. et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta 2010;1806(2):258—67. DOI: 10.1016/j.bbcan.2010.06.001.

175. Lee S.H., Nam H.J., Kang H.J. et al. Epigallocatechin3gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur J Cancer 2013;49(15):3210—8. DOI: 10.1016/j.ejca.2013.06.025.

176. Jin H., Gong W., Zhang C. et al. Epigal-locatechin gallate inhibits the proliferation of colorectal cancer cells by regulating Notch signaling. Onco Targets Ther 2013;6:145—53. DOI: 10.2147/OTT.S40914.

177. Subramaniam D., Ponnurangam S., Ra-mamoorthy P. et al. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 2012;7(2):e30590. DOI: 10.1371/journal.pone.0030590.

178. Zhang P., Li H., Yang B. et al. Biological significance and therapeutic implication of resveratrolinhibited Wnt, Notch and STAT3 signaling in cervical cancer cells. Genes Cancer 2014;5 (5—6):154—64. DOI: 10.18632/gene-sandcancer.15.

179. Yu X.M., JaskulaSztul R., Ahmed K. et al. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol Cancer Ther 2013;12(7):1276—87. DOI: 10.1158/15357163.MCT120841.

180. Lin H., Xiong W., Zhang X. et al. Notch1 activationdependent p53 restoration contributes to resveratrolinduced apoptosis in glioblastoma cells. Oncol Rep 2011;26(4):925—30. DOI: 10.3892/or.2011.1380.

181. Li Y., Maitah M.Y., Ahmad A. et al. Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opin Ther Targets 2012;16(1):49—66. DOI: 10.1517/14728222.2011.617367.

182. Tang A.Q., Cao X.C., Tian L. et al. Api-genin inhibits the selfrenewal capacity of human ovarian cancer SKOV3derived sphereforming cells. Mol Med Rep 2015;11(3):2221 —6. DOI: 10.3892/mmr.2014.2974.

183. Hosoya T., Arai M.A., Koyano T. et al. Naturally occurring smallmolecule inhibitors of hedgehog/GLImediated transcription. Chembiochem 2008;9(7): 1082—92. DOI: 10.1002/cbic.200700511.


Для цитирования:


Кирсанов К.И., Власова О.А., Фетисов Т.И., Зенков Р.Г., Лесовая Е.А., Белицкий Г.А., Гурова К., Якубовская М.Г. Влияние ДНК-тропных антиканцерогенных соединений на механизмы регуляции экспрессии генов. Успехи молекулярной онкологии. 2018;5(4):41-63. https://doi.org/10.17650/2313-805X-2018-5-4-41-63

For citation:


Kirsanov K.I., Vlasova O.A., Fetisov T.I., Zenkov R.G., Lesovaya E.A., Belitsky G.A., Gurova K., Yakubovskaya M.G. Influence of DNA-binding compounds with cancer preventive activity on the mechanisms of gene expression regulation. Advances in molecular oncology. 2018;5(4):41-63. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-4-41-63

Просмотров: 154


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)