Preview

Успехи молекулярной онкологии

Расширенный поиск

Протеомика в открытии маркеров рака предстательной железы

https://doi.org/10.17650/2313-805X.2015.2.2.17-28

Полный текст:

Аннотация

Рак предстательной железы (РПЖ) занимает 2-е место в мире по распространенности среди злокачественных опухолей у мужчин. Протеомика представляет перспективный подход для открытия новых маркеров, которые могут улучшить эффективность лечения больных РПЖ. Для диагностики, прогноза и оценки эффективности терапии заболевания необходимы более специфичные и чувствительные маркеры, чем специфический антиген предстательной железы. Кроме того, протеомика может идентифицировать новые важные молекулярные мишени для терапии РПЖ. В настоящее время изучаются несколько возможных источников биомаркеров РПЖ, каждый из которых имеет свои достоинства и недостатки, включая ткань, мочу, сыворотку и плазму крови, секрет предстательной железы. Инновационные высокотехнологичные протеомные платформы сейчас идентифицируют и количественно определяют новые специфичные и чувствительные биомаркеры для обнаружения, стратификации и лечения РПЖ. Однако многие из них все еще далеки от использования в клинической практике.

В этом обзоре обсуждаются последние достижения в протеомных исследованиях РПЖ, уделяется особое внимание открытию биомаркеров и их применению в клинической практике для диагноcтики, прогноза течения заболевания и стратификации больных.

Об авторах

Валерий Евгеньевич Шевченко
НИИ канцерогенеза ФГБНУ «РОНЦ им. Н.Н. Блохина»
Россия
Россия, 115478, Москва, Каширское шоссе, 24


А. В. Оленич
Медицинский научный центр «МедБиоСпектр»
Россия
Россия, 115478, Москва, Каширское шоссе, 24, стр. 8


Н. Е. Арноцкий
НИИ канцерогенеза ФГБНУ «РОНЦ им. Н.Н. Блохина»
Россия
Россия, 115478, Москва, Каширское шоссе, 24


Список литературы

1. Jemal A., Siegel R., Xu J., Ward E. Cancer statistics 2010. CA Cancer J Clin 2010;60(5): 277–300.

2. Ferlay J., Shin H.R., Bray F. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–917.

3. Stamey T.A., Freiha F.S., McNeal J.E. et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 1993;71(3 Suppl):933–8.

4. Thompson I.M., Pauler D.K., Goodman P.J. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level b or =4.0 ng per milliliter. N Engl J Med 2004;350:2239–46.

5. Kulasingam V., Diamandis E.P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 2008;5(10): 588–99.

6. Paweletz C.P., Liotta L.A., Petricoin E.F. New technologies for biomarker analysis of prostate cancer progression: laser capture microdissection and tissue proteomics. Urology 2001;57(4 Suppl 1):160–3.

7. Aldred S., Grant M.M., Griffiths H.R. The use of proteomics for the assessment of clinical samples in research. Clin Biochem 2004;37(11):943–52.

8. Zieske L.R. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 2006;57(7):1501–8.

9. Craft N., Shostak Y., Carey M., Sawyers C.L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999;5(3):280–5.

10. Zhu M.L., Kyprianou N. Androgen receptor and growth factor signaling crosstalk in prostate cancer cells. Endocr Relat Cancer 2008;15:841–9.

11. Zheng Y., Xu Y., Ye B. et al. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer 2003;98(12):2576–82.

12. Ummanni R., Mundt F., Pospisil H. et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS One 2011;6(2):16833.

13. Montironi R., Mazzucchelli R., LopezBeltran A. et al. Mechanisms of disease: highgrade prostatic intraepithelial neoplasia and other proposed preneoplastic lesions in the prostate. Nat Clin Pract Urol 2007;4(6): 321–32.

14. Cheung P.K., Woolcock B., Adomat H. et al. Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Res 2004;64(17):5929–33.

15. Alaiya A.A., Al-Mohanna M., Aslam M. et al. Proteomics-based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol 2011;38(4):1047–57.

16. Liu A., Wei L., Gardner W.A. et al. Correlated alterations in prostate basal cell layer and basement membrane. Int J Biol Sci 2009;5(3):276–85.

17. Diaz J.I., Cazares L.H., Corica A., John Semmes O. Selective capture of prostatic basal cells and secretory epithelial cells for proteomic and genomic analysis. Urol Oncol 2004;22(4):329–36.

18. Khamis Z.I., Iczkowski K.A., Sahab Z.J., Sang Q.X. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J Cancer 2010;1:70–9.

19. Gao X., Pang J., Li L.Y. et al. Expression profiling identifies new function of collapsin response mediator protein 4 as a metastasissuppressor in prostate cancer. Oncogene 2010;29(32):4555–66.

20. Pang J., Liu W.P., Liu X.P. et al. Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res 2010;9(1):216–26.

21. Skvortsov S., Schäfer G., Stasyk T. et al. Proteomics profiling of microdissected lowand high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res 2011;10(1):259–68.

22. Gottlieb B., Beitel L.K., Wu J.H., Trifiro M. The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 2004;23(6):527–33.

23. Paliouras M., Zaman N., Lumbroso R. et al. Dynamic rewiring of the androgen receptor protein interaction network correlates with prostate cancer clinical outcomes. Integr Biol (Camb) 2011;3(10):1020–32.

24. Sun C., Song C., Ma Z. et al. Periostin identified as a potential biomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy. Proteome Sci 2011;9:22.

25. Sun C., Zhao X., Xu K. et al. Periostin: a promising target of therapeutical intervention for prostate cancer. J Transl Med 2011;9:99.

26. Zhang S., Wang X., Osunkoya A.O. et al. EPLIN downregulation promotes epithelial–mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene 2011;30(50):4941–52.

27. Quanico J., Franck J., Dauly C. et al. Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J Proteomics. 2013;79:200–18.

28. Geisler C., Gaisa N.T., Pfister D. et al. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. Biomed Res Int 2015;2015:454256.

29. Lai Y.H., Cheng J., Cheng D. et al. SOX4 interacts with plakoglobin in a Wnt3adependent manner in prostate cancer cells. BMC Cell Biol 2011;12:50.

30. Endoh K., Nishi M., Ishiguro M. et al. Identification of phosphorylated proteins involved in the oncogenesis of prostate cancer via Pin1-proteomic analysis. Prostate 2012;72(6):626–37.

31. Glen A., Gan C.S., Hamdy F.C. et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res 2008;7(3): 897–907.

32. Garbis S.D., Tyritzis S.I., Roumeliotis T. et al. Search for potentialmarkers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using aminespecific isobaric tagging (iTRAQ) with twodimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 2008;7(8):3146–58.

33. Yocum A.K., Khan A.P., Zhao R., Chinnaiyan A.M. Development of selected reaction monitoring-MS methodology to measure peptide biomarkers in prostate cancer. Proteomics 2010;10(19):3506–14.

34. Roobol M.J., Haese A., Bjartell A. Tumour markers in prostate cancer III: biomarkers in urine. Acta Oncol 2011;50(Suppl 1):85–9.

35. Shariat S.F., Semjonow A., Lilja H. et al. Tumor markers in prostate cancer I: bloodbased markers. Acta Oncol 2011;50(Suppl 1): 61–75.

36. Principe S., Kim Y., Fontana S. et al. Identification of prostate-enriched proteins by in-depth proteomic analyses of expressed prostatic secretions in urine. J Proteome Res 2012;11(4):2386–96.

37. Drake R.R., Elschenbroich S., LopezPerez O. et al. In-depth proteomic analyses of direct expressed prostatic secretions. J Proteome Res 2010;9(5):2109–16. 38. Teng P.N., Bateman N.W., Hood B.L., Conrads T.P. Advances in proximal fluid proteomics for disease biomarker discovery. J Proteome Res 2010;9(12):6091–100.

38. Rehman I., Azzouzi A.R., Catto J.W. et al. Proteomic analysis of voided urine after prostaticmassage frompatients with prostate cancer: a pilot study. Urology 2004;64(6):1238–43.

39. M'Koma A.E., Blum A.E., Norris J.L. et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem Biophys Res Commun 2007;353(3): 829–34.

40. Florentinus A.K., Bowden P., Sardana G. et al. Identification and quantification of peptides and proteins secreted from prostate epithelial cells by unbiased liquid chromatography tandem mass spectrometry using goodness of fit and analysis of variance. J Proteomics 2012;75(4):1303–17.

41. Chen W.Z., Pang B., Yang B. et al. Differential proteome analysis of conditioned medium of BPH-1 and LNCaP cells. Chin Med J (Engl) 2011;124(22):3806–9.

42. Sardana G., Jung K., Stephan C., Diamandis E.P. Proteomic analysis of conditioned media fromthe PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J Proteome Res 2008;7(8): 3329–38.

43. Ji L., Jayachandran G., Roth J.A. High throughput profiling of serum phosphoproteins/peptides using the SELDITOF-MS platform. Methods Mol Biol 2012;818:199–216.

44. Schwenk J.M., Igel U., Neiman M. et al. Toward next generation plasma profiling via heat-induced epitope retrieval and array-based assays. Mol Cell Proteomics 2010;9(11):2497–507.

45. Hawkridge A.M., Muddiman D.C. Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Annu Rev Anal Chem (Palo Alto Calif) 2009;2:265–77.

46. Schiess R., Wollscheid B., Aebersold R. Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol 2009;3(1): 33–44.

47. Saraon P., Musrap N., Cretu D. et al. Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer. J Biol Chem 2012;287(41):34019–31.

48. Theodorescu D., Schiffer E., Bauer H.W. et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl 2008;2(4):556–70.

49. Schiffer E., Bick C., Grizelj B. et al. Urinary proteome analysis for prostate cancer diagnosis: cost-effective application in routine clinical practice in Germany. Int J Urol 2012;19(2):118–25.

50. Miller J.C., Zhou H., Kwekel J. et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 2003;3(1):56–63.

51. Marusyk A., Almendro V., Polyak K. Intratumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012;12(5):323–34.

52. Mueller C., Liotta L.A., Espina V. Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 2010;4(6):461–81.

53. Prior C., Guillen-Grima F., Robles J.E. et al. Use of a combination of biomarkers in serum and urine to improve detection of prostate cancer. World J Urol 2010;28(6): 681–6.

54. Mink S.R., Hodge A., Agus D.B. et al. Beta-2-microglobulin expression correlates with high-grade prostate cancer and specific defects in androgen signaling. Prostate 2010;70(11):1201–10.

55. Gross M., Top I., Laux I. et al. Beta-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer. Clin Cancer Res 2007;13(7):1979–86.

56. Rehman I., Evans C.A., Glen A. et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One 2012;7(2):e30885.

57. Katafigiotis S.I., Tyritzis., Stravodimos K.G., Alamanis C. et al. Zinc α2-glycoprotein as a potential novel urine biomarker for the early diagnosis of prostate cancer. BJU Int 2012;110(11 Pt B):E688–93.

58. Hassan M.I., Kumar V., Kashav T. et al. Proteomic approach for purification of seminal plasma proteins involved in tumorproliferation. J Sep Sci 2007;30(12):1979–88.

59. Henshall S.M., Horvath L.G., Quinn D.I. et al. Zinc-alpha2-glycoprotein expression as a predictor of metastatic prostate cancer following radical prostatectomy. J Natl Cancer Inst 2006;98(19):1420–4.

60. Shariat S.F., Shalev M., Menesses-Diaz A. et al. Preoperative plasma levels of transforming growth factor beta(1) (TGFbeta(1)) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol 2001;19(11):2856–64.

61. Ivanovic V., Melman A., Davis-Joseph B. et al. Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer. Nat Med 1995;1(4):282–4.

62. Shariat S.F., Kattan M.W., Traxel E. et al. Association of pre- and postoperative plasma levels of transforming growth factor beta(1) and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res 2004;10(6):1992–9.

63. Adler H.L., McCurdy M.A., Kattan M.W. et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 1999;161(1):182–7.

64. Michalaki V., Syrigos K., Charles P., Waxman J. Serum levels of IL-6 and TNFalpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 2004;90(12):2312–6.

65. Nakashima J., Tachibana M., Horiguchi Y. et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res 2000;6(7):2702–6.

66. True L.D., Zhang H., Ye M. et al. CD90/THY1 is overexpressed in prostate cancerassociated fibroblasts and could serve as a cancer biomarker. Mod Pathol 2010;23(10):1346–56.

67. Morgan R., Boxall A., Bhatt A., Bailey M. et al. Engrailed-2 (EN2): a tumor specific urinary biomarker for the early diagnosis of prostate cancer. Clin Cancer Res 2011;17(5):1090–8.

68. Li C., Zang T., Wrobel K. et al. Quantitative urinary proteomics using stable isotope labelling by peptide dimethylation in patients with prostate cancer. Anal Bioanal Chem. 2015;407(12):3393–404.

69. Josson S., Nomura T., Lin J.T. et al. β2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 2011;71(7):2600–10.

70. Hassan M.I., Kumar V., Kashav T. et al. Proteomic approach for purification of seminal plasma proteins involved in tumor proliferation. J Sep Sci 2007;30(12):1979–88.

71. Byrne J.C., Downes M.R., O'Donoghue N. et al. 2D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res 2009;8(2):942–57.

72. KälinM., Cima I., Schiess R. et al. Novel prognosticmarkers in the serum of patientswith

73. castration-resistant prostate cancer derived fromquantitative analysis of the pten conditional knockout mouse proteome. Eur Urol 2011;60(6):1235–43.

74. Cima I., Schiess R., Wild P. et al. Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer. Proc Natl Acad Sci USA 2011;108(8):3342–7.

75. Halabi S., Small E.J., Kantoff P.W. et al. Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J Clin Oncol 2003;21(7):1232–7.

76. Valadi H., Ekström K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9(6):654–9.

77. Guescini M., Leo G., Genedani S. et al. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp Cell Res 2012;318(5):603–13.

78. Logozzi M., De Milito A., Lugini L. et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 2009;4(4):e5219.

79. Silva J., Garcia V., Rodriguez M. et al. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer 2012;51(4):409–18.

80. Tavoosidana G., Ronquist G., Darmanis S. et al. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Proc Natl Acad Sci USA 2011;108(21):8809–14.

81. Duijvesz D., Luider T., Bangma C.H., Jenster G. Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 2011;59(5):823–31.

82. Sandvig K., Llorente A. Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Mol Cell Proteomics 2012;11(7):M111.012914.

83. Filella X., Foj L., Augé J.M. et al. Clinical utility of % p2PSA and prostate health index in the detection of prostate cancer. Clin Chem Lab Med 2014;52(9):1347–55.

84. Postma R, Schröder FH. Screening for prostate cancer. Eur J Cancer 2005;41(6):825–33.

85. Draisma G., Etzioni R., Tsodikov A. et al. Lead time and overdiagnosis in prostatespecific antigen screening: importance of methods and context. J Natl Cancer Inst 2009;101(6):374–83.

86. Jansen F.H., van Schaik R.H., Kurstjens J. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur Urol 2010;57(6):921–7.

87. Guazzoni G., Nava L., Lazzeri M. et al. Prostate-specific antigen (PSA) isoform p2PSAsignificantly improves the prediction of prostate cancer at initial extended prostate biopsies in patients with total PSA between 2.0 and 10 ng/ml: results of a prospective study in a clinical setting. Eur Urol 2011;60(2):214–22.

88. Mikolajczyk S.D., Millar L.S., Wang T.J. et al. A precursor form of prostate-specific antigen is more highly elevated in prostate cancer compared with benign transition zone prostate tissue. Cancer Res 2000;60(3):756–9.

89. Catalona W.J., Bartsch G., Rittenhouse H.G. et al. Serum pro-prostate specific antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng/ml prostate specific antigen. J Urol 2004;171(6 Pt 1): 2239–44.

90. Jansen F.H., Roobol M., Jenster G. et al. Screening for prostate cancer in 2008 II: the importance of molecular subforms of prostatespecific antigen and tissue kallikreins. Eur Urol 2009;55(3):563–74.

91. Mikolajczyk S.D., Rittenhouse H.G. Pro PSA: a more cancer specific form of prostate specific antigen for the early detection of prostate cancer. Keio J Med 2003;52(2): 86–91.

92. Lazzeri M., Briganti A., Scattoni V. et al. Serum index test % [-2]proPSA and Prostate Health Index are more accurate than prostate specific antigen and % fPSA in predicting a positive repeat prostate biopsy. J Urol 2012;188(4):1137–43.

93. Scattoni V., Lazzeri M., Lughezzani G. et al. Head-to-head comparison of prostate health index and urinary PCA3 for predicting cancer at initial or repeat biopsy. J Urol 2013;190(2):496–501.


Для цитирования:


Шевченко В.Е., Оленич А.В., Арноцкий Н.Е. Протеомика в открытии маркеров рака предстательной железы. Успехи молекулярной онкологии. 2015;2(2):17-28. https://doi.org/10.17650/2313-805X.2015.2.2.17-28

For citation:


Shevchenko V.E., Olenich A.V., Olenich N.E. The proteomics in prostate cancer biomarker discovery. Advances in molecular oncology. 2015;2(2):17-28. (In Russ.) https://doi.org/10.17650/2313-805X.2015.2.2.17-28

Просмотров: 611


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)