Modern approaches for the screening of epigenetically active xenobiotics
https://doi.org/10.17650/2313-805X-2019-6-3-8-27
Abstract
Objective. Review of the modern methodological approaches for testing and studying the epigenetic activity of xenobiotics.
Materials and methods. In preparing the review, we used information databases of biomedical literature SciVerse Scopus (538), PubMed (746), Web of Science (625), RSCI (45). To obtain full-text documents, electronic resources of PubMed Central (PMC), Research Gate, RSCI, CyberLeninka were used. In the text of the review, 87 modern publications (2010–2019) were cited, as well as 17 earlier articles published by the founders of the methods, which are used today.
Results. In the review, current data on epigenetic regulation for gene expression at the level of DNA methylation and histone modification are discussed, in vitro model systems and model organisms are described, and modern methods for screening of epigenetically active xenobiotics are presented.
Conclusion. Modern data concerning the mechanisms of epigenetic regulation of gene expression, the usage of existing model systems and model organisms, as well as the application of various methodological approaches and techniques, allow extensive screening of xenobiotics (including drugs and compounds synthesized for national economic tasks) for epigenetic activity. The identification of epigenetically active compounds is important in terms of improving the prevention and treatment of a number of diseases and, in particular, malignant neoplasms.
Keywords
About the Authors
V. P. MaksimovaRussian Federation
24 Kashirskoe Shosse, Moscow 115478
P. E. Bugaeva
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991
E. M. Zhidkova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
O. G. Usalka
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991
E. A. Lesovaya
Russian Federation
24 Kashirskoe Shosse, Moscow 115478,
9 Vysokovol’tnaya St., Ryazan 390026
G. A. Belitsky
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. G. Yakubovskaya
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
K. I. Kirsanov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478,
6 Miklukho-Maklayа St., Moscow 117198
References
1. Portela A., Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010;28(10):1057–68. DOI: 10.1038/nbt.1685.
2. Tikhodeyev O.N. The mechanisms of epigenetic inheritance: how diverse are they? Biol Rev Camb Philos Soc 2018;93(4):1987–2005. DOI: 10.1111/brv.12429.
3. Murr R. Interplay between different epigenetic modifications and mechanisms. Adv Genet 2010;70:101–41. DOI: 10.1016/B978-0-12-380866-0.60005-8.
4. Burenina O.Yu., Oretskaya T.S., Kubareva E.A. Non-coding RNAs regulating transcription in eucaryotic cells. Acta Naturae 2017;9(4(35)):13–26. (In Russ.).
5. Herceg Z., Lambert M.P., van Veldhoven K. et al. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013;34(9):1955–67. DOI: 10.1093/carcin/bgt212.
6. Kanwal R., Gupta K., Gupta S. Cancer epigenetics: an introduction. Methods Mol Biol 2015;1238:3–25. DOI: 10.1007/978-1-4939-1804-1_1.
7. Jones P.A., Issa J.P., Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016;17(10):630– 41. DOI: 10.1038/nrg.2016.93.
8. Miousse I.R., Murphy L.A., Lin H. et al. Dose-response analysis of epigenetic, metabolic, and apical endpoints after short-term exposure to experimental hepatotoxicants. Food Chem Toxicol 2017;109(Pt 1):690–702. DOI: 10.1016/j.fct.2017.05.013.
9. Kouzarides T. Chromatin modifications and their function. Cell 2007;128(4): 693–705. DOI: 10.1016/j.cell.2007.02.005.
10. Long H.K., King H.W., Patient R.K. et al. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved. Nucleic Acids Res 2016;44(14):6693–706. DOI: 10.1093/nar/gkw258.
11. Paulsen M., Ferguson-Smith A.C. DNA methylation in genomic imprinting, development, and disease. J Pathol 2001; 195(1):97–110. DOI: 10.1002/path.890.
12. Wu H., Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014;156(1–2): 45–68. DOI: 10.1016/j.cell.2013.12.019.
13. Cui D., Xu X. DNA Methyltransferases, DNA Methylation, and Age-Associated Cognitive Function. Int J Mol Sci 2018;19(5). DOI: 10.3390/ijms19051315.
14. Shimbo T., Wade P.A. Proteins that read DNA methylation. Adv Exp Med Biol 2016;945:303–20. DOI: 10.1007/978-3-319-43624-1_13.
15. Lennartsson A., Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta 2009;1790(9):863–8. DOI: 10.1016/j.bbagen.2008.12.006.
16. Wang G.G., Allis C.D., Chi P. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med 2007;13(9):363–72. DOI: 10.1016/j.molmed.2007.07.003.
17. Yang J., Sharma S., Kotter P. et al. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae. Nucleic Acids Res 2015;43(4):2342–52. DOI: 10.1093/nar/gkv058.
18. Izzo A., Schneider R. Chatting histone modifications in mammals. Brief Funct Genomics 2010;9(5–6):429–43. DOI: 10.1093/bfgp/elq024.
19. Verdone L., Agricola E., Caserta M. et al. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 2006;5(3):209–21. DOI: 10.1093/bfgp/ell028.
20. Bonasio R. The expanding epigenetic landscape of non-model organisms. J Exp Biol 2015;218(Pt 1):114–22. DOI: 10.1242/jeb.110809.
21. Grunstein M., Gasser S.M. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 2013;5(7). DOI: 10.1101/cshperspect.a017491.
22. Allshire R.C., Ekwall K. Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 2015;7(7):a018770. DOI: 10.1101/cshperspect.a018770.
23. McGaughey D.M., Abaan H.O., Miller R.M. et al. Genomics of CpG methylation in developing and developed zebrafish. G3 (Bethesda) 2014;4(5):861–9. DOI: 10.1534/g3.113.009514.
24. Mudbhary R., Sadler K.C. Epigenetics, development, and cancer: zebrafish make their mark. Birth Defects Res C Embryo Today 2011;93(2):194–203. DOI: 10.1002/bdrc.20207.
25. Cavalieri V., Spinelli G. Environmental epigenetics in zebrafish. Epigenetics Chromatin 2017;10(1):46. DOI: 10.1186/s13072-017-0154-0.
26. Chatterjee N., Gim J., Choi J. Epigenetic profiling to environmental stressors in model and non-model organisms: Ecotoxicology perspective. Environ Health Toxicol 2018;33(3):e2018015–0. DOI: 10.5620/eht.e2018015.
27. Fahrenkrog B. Histone modifications as regulators of life and death in Saccharomyces cerevisiae. Microb Cell 2015;3(1):1–13. DOI: 10.15698/mic2016.01.472.
28. Sinha I., Buchanan L., Ronnerblad M. et al. Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast. Epigenomics 2010;2(3):377–93. DOI: 10.2217/epi.10.18.
29. Chang S.S., Zhang Z., Liu Y. RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 2012;66:305–23. DOI: 10.1146/annurevmicro092611-150138.
30. Aramayo R., Selker E.U. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 2013;5(10):a017921. DOI: 10.1101/cshperspect.a017921.
31. Jeon J., Choi J., Lee G.W. et al. Genomewide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci Rep 2015;5:8567. DOI: 10.1038/srep08567.
32. Gonzalez-Aguilera C., Palladino F., Askjaer P.C. elegans epigenetic regulation in development and aging. Brief Funct Genomics 2014;13(3):223–34. DOI: 10.1093/bfgp/elt048.
33. Liu T., Rechtsteiner A., Egelhofer T.A. et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res 2011;21(2):227–36. DOI: 10.1101/gr.115519.110.
34. Arico J.K., Katz D.J., van der Vlag J. et al. Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells. PLoS Genet 2011;7(6):e1001391. DOI: 10.1371/journal.pgen.1001391.
35. Haley B., Tang G., Zamore P.D. In vitro analysis of RNA interference in Drosophila melanogaster. Methods 2003;30(4):330–6. DOI:
36. Boros I.M. Histone modification in Drosophila. Brief Funct Genomics 2012;11(4):319–31. DOI: 10.1093/bfgp/els029.
37. Robichaud N.F., Sassine J., Beaton M.J. et al. The epigenetic repertoire of Daphnia magna includes modified histones. Genet Res Int 2012;2012:174860. DOI: 10.1155/2012/174860.
38. McGowan R.A., Martin C.C. DNA methylation and genome imprinting in the zebrafish, Danio rerio: some evolutionary ramifications. Biochem Cell Biol 1997;75(5):499–506.
39. Goll M.G., Halpern M.E. DNA methylation in zebrafish. Prog Mol Biol Transl Sci 2011;101:193–218. DOI: 10.1016/B978-0-12-387685-0.00005-6.
40. Lindeman L.C., Reiner A.H., Mathavan S. et al. Tiling histone H3 lysine 4 and 27 methylation in zebrafish using high-density microarrays. PLoS One 2010;5(12):e15651. DOI: 10.1371/journal.pone.0015651.
41. Harris K.D., Bartlett N.J., Lloyd V.K. Daphnia as an emerging epigenetic model organism. Genet Res Int 2012;2012: 147892. DOI: 10.1155/2012/147892.
42. Kato Y., Shiga Y., Kobayashi K. et al. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 2011;220(11–12):337–45. DOI: 10.1007/s00427-011-0353-9.
43. Tamaoki K., Okada R., Ishihara A. et al. Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis. Cell Biosci 2016;6:2. DOI: 10.1186/s13578-016-0067-9.
44. Hardwick L.J., Philpott A. An oncologists friend: How Xenopus contributes to cancer research. Dev Biol 2015;408(2):180–7. DOI: 10.1016/j.ydbio.2015.02.003.
45. Flynt A.S., Lai E.C. RNAi in Xenopus: look before you leap. Genes Dev 2011;25(11):1105–8. DOI: 10.1101/gad.2062911.
46. Shechter D., Nicklay J.J., Chitta R.K. et al. Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. J Biol Chem 2009;284(2): 1064–74. DOI: 10.1074/jbc.M807273200.
47. Malone J.H., Chrzanowski T.H., Michalak P. Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri. PLoS One 2007;2(8):e781. DOI: 10.1371/journal.pone.0000781.
48. Munoz-Lopez M., Garcia-Perez J.L. DNA transposons: nature and applications in genomics. Curr Genomics 2010;11(2):115–28. DOI: 10.2174/138920210790886871.
49. Fang X., Qi Y. RNAi in plants: an argonaute-centered view. Plant Cell 2016;28(2):272–85. DOI: 10.1105/tpc.15.00920.
50. Luo C., Lam E. Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIPseq. Methods Mol Biol 2014;1112:177–93. DOI: 10.1007/978-1-62703-773-0_12.
51. Blewitt M., Whitelaw E. The use of mouse models to study epigenetics. Cold Spring Harb Perspect Biol 2013;5(11):a017939. DOI: 10.1101/cshperspect.a017939.
52. Blum M., Ott T. Xenopus: An undervalued model organism to study and model human genetic disease. Cells Tissues Organs 2018;205(5–6):303–13. DOI: 10.1159/000490898.
53. Martins J., Oliva Teles L., Vasconcelos V. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int 2007;33(3):414–25. DOI: 10.1016/j.envint.2006.12.006.
54. Oikawa M., Inoue K., Shiura H. et al. Understanding the X chromosome inactivation cycle in mice: a comprehensive view provided by nuclear transfer. Epigenetics 2014;9(2):204–11. DOI: 10.4161/epi.26939.
55. Hanna C.W., Demond H., Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018;24(5):556–76. DOI: 10.1093/humupd/dmy021.
56. Marczylo E.L., Jacobs M.N., Gant T.W. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol 2016;46(8):676–700. DOI: 10.1080/10408444.2016.1175417.
57. Rosenfeld C.S. Animal models to study environmental epigenetics. Biol Reprod 2010;82(3):473–88. DOI: 10.1095/biolreprod.109.080952.
58. Nilsson E.E., Sadler-Riggleman I., Skinner M.K. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet 2018;4(2): dvy016. DOI: 10.1093/eep/dvy016.
59. Patrizi B., Siciliani de Cumis M. TCDD toxicity mediated by epigenetic mechanisms. Int J Mol Sci 2018;19(12). DOI: 10.3390/ijms19124101.
60. Barrera L.N., Johnson I.T., Bao Y. et al. Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro. Eur J Nutr 2013;52(4):1327–41. DOI: 10.1007/s00394-012-0442-1.
61. Paz M.F., Fraga M.F., Avila S. et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 2003;63(5):1114–21.
62. Stefanska B., Huang J., Bhattacharyya B. et al. Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res 2011;71(17):5891–903. DOI: 10.1158/0008-5472.CAN-10-3823.
63. Varley K.E., Gertz J., Bowling K.M. et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 2013;23(3):555–67. DOI: 10.1101/gr.147942.112.
64. Peterson M., Chandler V.L., Bosco G. High SINE RNA Expression correlates with post-transcriptional downregulation of BRCA1. Genes (Basel) 2013;4(2):226–43. DOI: 10.3390/genes4020226.
65. Hashimoto Y., Zumwalt T.J., Goel A. DNA methylation patterns as noninvasive biomarkers and targets of epigenetic therapies in colorectal cancer. Epigenomics 2016;8(5):685–703. DOI: 10.2217/epi-2015-0013.
66. Menga A., Palmieri E.M., Cianciulli A. et al. SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism. FEBS J 2017;284(6):967–84. DOI: 10.1111/febs.14028.
67. Le A.V., Szaumkessel M., Tan T.Z. et al. DNA methylation profiling of breast cancer cell lines along the epithelial mesenchymal spectrum-implications for the choice of circulating tumour DNA methylation markers. Int J Mol Sci 2018;19(9). DOI: 10.3390/ijms19092553.
68. Huang Y., Song H., Hu H. et al. Trichosanthin inhibits DNA methyltransferase and restores methylation-silenced gene expression in human cervical cancer cells. Mol Med Rep 2012;6(4):872–8. DOI: 10.3892/mmr.2012.994.
69. Sun H., Shamy M., Costa M. Nickel and epigenetic gene silencing. Genes (Basel) 2013;4(4):583–95. DOI: 10.3390/genes4040583.
70. Wang B., Li Y., Shao C. et al. Cadmium and its epigenetic effects. Curr Med Chem 2012;19(16):2611–20. DOI: 10.2174/092986712800492913.
71. Gul S. Epigenetic assays for chemical biology and drug discovery. Clin Epigenetics 2017;9:41. DOI: 10.1186/s13148-017-0342-6.
72. Kurdyukov S., Bullock M. DNA methylation analysis: choosing the right method. Biology (Basel) 2016;5(1). DOI: 10.3390/biology5010003.
73. Melnikov A.A., Gartenhaus R.B., Levenson A.S. et al. MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Res 2005;33(10):e93. DOI: 10.1093/nar/gni092.
74. Boers R., Boers J., de Hoon B. et al. Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPI. Genome Res 2018;28(1):88–99. DOI: 10.1101/gr.222885.117.
75. Jelinek J., Madzo J. DREAM: a simple method for DNA methylation profiling by high-throughput sequencing. Methods Mol Biol 2016;1465:111–27. DOI: 10.1007/978-1-4939-4011-0_10.
76. Jelinek J., Lee J.T., Cesaroni M. et al. Digital Restriction Enzyme Analysis of Methylation (DREAM). Methods Mol Biol 2018;1708:247–65. DOI: 10.1007/978-1-4939-7481-8_13.
77. Yang Y., Scott S.A. DNA methylation profiling using long-read Single Molecule Real-Time Bisulfite Sequencing (SMRT-BS). Methods Mol Biol 2017;1654:125–34. DOI: 10.1007/978-1-4939-7231-9_8.
78. Deatherage D.E., Potter D., Yan P.S. et al. Methylation analysis by microarray. Methods Mol Biol 2009;556:117–39. DOI: 10.1007/978-1-60327-192-9_9.
79. Liu L., Wylie R.C., Hansen N.J. et al. Profiling DNA methylation by bisulfite genomic sequencing: problems and solutions. Methods Mol Biol 2004;287:169–79. DOI: 10.1385/1-59259-828-5:169.
80. Parrish R.R., Day J.J., Lubin F.D. Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues. Curr Protoc Neurosci 2012;Chapter 7: Unit 7.24. DOI: 10.1002/0471142301.ns0724s60.
81. Delaney C., Garg S.K., Yung R. Analysis of DNA methylation by pyrosequencing. Methods Mol Biol 2015;1343:249–64. DOI: 10.1007/978-1-4939-2963-4_19.
82. Bernstein D.L., Kameswaran V., Le Lay J.E. et al. The BisPCR(2) method for targeted bisulfite sequencing. Epigenetics Chromatin 2015;8:27. DOI: 10.1186/s13072-015-0020-x.
83. Ku C.S., Naidoo N., Wu M. et al. Studying the epigenome using next generation sequencing. J Med Genet 2011;48(11):721–30. DOI: 10.1136/jmedgenet-2011-100242.
84. Wojdacz T.K., Dobrovic A., Hansen L.L. Methylation-sensitive high-resolution melting. Nat Protoc 2008;3(12):1903–8. DOI: 10.1038/nprot.2008.191.
85. Gonzalgo M.L., Liang G. Methylationsensitive single-nucleotide primer extension(Ms-SNuPE) for quantitative measurement of DNA methylation. Nat Protoc 2007;2(8):1931–6. DOI: 10.1038/nprot.2007.271.
86. Meissner A., Gnirke A., Bell G.W. et al. Reduced representation bisulfite sequencing for comparative highresolution DNA methylation analysis. Nucleic Acids Res 2005;33(18):5868–77. DOI: 10.1093/nar/gki901.
87. Harris R.A., Wang T., Coarfa C. et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010;28(10):1097–105. DOI: 10.1038/nbt.1682.
88. Bilichak A., Kovalchuk I. The Combined Bisulfite Restriction Analysis (COBRA) assay for the analysis of locus-specific changes in methylation patterns. Methods Mol Biol 2017;1456:63–71. DOI: 10.1007/978-1-4899-7708-3_5.
89. Zhang X., Sun Q., Shan M. et al. Promoter hypermethylation of ARID1A gene is responsible for its low mRNA expression in many invasive breast cancers. PLoS One 2013;8(1):e53931. DOI: 10.1371/journal.pone.0053931.
90. Hsu Y.W., Huang R.L., Lai H.C. MeDIP-on-Chip for methylation profiling. Methods Mol Biol 2015;1249:281–90. DOI: 10.1007/978-1-4939-2013-6_21.
91. Lindner R., Puttagunta R., Nguyen T. et al. DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci Data 2014;1:140038. DOI: 10.1038/sdata.2014.38.
92. Staunstrup N.H., Starnawska A., Nyegaard M. et al. Genome-wide DNA methylation profiling with MeDIP-seq using archived dried blood spots. Clin Epigenetics 2016;8:81. DOI: 10.1186/s13148-016-0242-1.
93. So M.Y., Tian Z., Phoon Y.S. et al. Gene expression profile and toxic effects in human bronchial epithelial cells exposed to zearalenone. PLoS One 2014;9(5):e96404. DOI: 10.1371/journal.pone.0096404.
94. Lisanti S., Omar W.A., Tomaszewski B. et al. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One 2013;8(11):e79044. DOI: 10.1371/journal.pone.0079044.
95. Li X.L., Yuan J., Dong Y.S. et al. Optimization of an HPLC method fordetermining the genomic methylation levels of taxus cells. J Chromatogr Sci 2016;54(2):200–5. DOI: 10.1093/chromsci/bmv129.
96. Gomez D., Shankman L.S., Nguyen A.T. et al. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat Methods 2013;10(2): 171–7. DOI: 10.1038/nmeth.2332.
97. Dai B., Giardina C., Rasmussen T.P. Quantitation of nucleosome acetylation and other histone posttranslational modifications using microscale NUELISA. Methods Mol Biol 2013;981:167–76. DOI: 10.1007/978-1-62703-305-3_13.
98. Jayani R.S., Ramanujam P.L., Galande S. Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting. Methods Cell Biol 2010;98:35–56. DOI: 10.1016/S0091-679X(10)98002-3.
99. Shechter D., Dormann H.L., Allis C.D. et al. Extraction, purification and analysis of histones. Nat Protoc 2007;2(6):1445–57. DOI: 10.1038/nprot.2007.202.
100. Huang H., Lin S., Garcia B.A. et al. Quantitative proteomic analysis of histone modifications. Chem Rev 2015;115(6): 2376–418. DOI: 10.1021/cr500491u.
101. Gurley L.R., Valdez J.G., Prentice D.A. et al. Histone fractionation by highperformance liquid chromatography. Anal Biochem 1983;129(1):132–44. DOI: 10.1016/0003-2697(83)90061-1.
102. You J., Wang L., Saji M. et al. Highsensitivity TFA-free LC-MS for profiling histones. Proteomics 2011;11(16):3326–34. DOI: 10.1002/pmic.201000445.
103. Pitt J.J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev 2009;30(1):19–34. DOI: PMC2643089
104. Pillai S., Dasgupta P., Chellappan S.P. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2015;1288:429–46. DOI: 10.1007/978-1-4939-2474-5_25.
Review
For citations:
Maksimova V.P., Bugaeva P.E., Zhidkova E.M., Usalka O.G., Lesovaya E.A., Belitsky G.A., Yakubovskaya M.G., Kirsanov K.I. Modern approaches for the screening of epigenetically active xenobiotics. Advances in Molecular Oncology. 2019;6(3):8-27. (In Russ.) https://doi.org/10.17650/2313-805X-2019-6-3-8-27