Preview

Успехи молекулярной онкологии

Расширенный поиск

Молекулярно-генетические особенности и маркеры гастроинтестинальных стромальных опухолей

https://doi.org/10.17650/2313-805X.2015.2.2.29-40

Аннотация

Гастроинтестинальные стромальные опухоли (ГИСО) – наиболее распространенная группа мезенхимальных опухолей желудочно-кишечного тракта, которые имеют особые клинико-морфологические, иммуногистохимические и молекулярные характеристики. Отличительной чертой ГИСО является наличие поверхностного антигена CD117 (рецептора KIT), выявляемого c помощью иммуногистохимического метода. ГИСО представляют гетерогенную группу опухолей, содержащих активирующие мутации в генах KIT (75–80 %) и PDGFRA (5–15 %), кодирующих рецепторные тирозинкиназы (ТК). Многочисленные мутации коррелируют со специфической морфологией ГИСО, гистологическим фенотипом, метастазированием и прогнозом. В 10–15 % ГИСО имеются гены KIT и PDGFRA дикого типа, некоторые содержат активирующие мутации BRAF, IGF1R или PIK3CA. Другие пациенты с ГИСО дикого типа имеют наследственные синдромы (нейрофиброматоз 1-го типа, синдром Карнея–Стратакиса или триаду Карнея) и содержат герминальные мутации в гене NF1 либо SDHA, SDHB, SDHC и SDHD, кодирующих субъединицы комплекса сукцинатдегидрогеназы. ГИСО – первая и наиболее изученная модель для отработки принципов и методов индивидуализированной таргетной терапии солидных опухолей ингибиторами ТК

Об авторах

Наталья Николаевна Мазуренко
ФГБНУ «РОНЦ им. Н. Н. Блохина»
Россия
НИИ канцерогенеза, Россия, 115478, Москва, Каширское шоссе, 24


И. В. Цыганова
ФГБНУ «РОНЦ им. Н. Н. Блохина»
Россия
НИИ канцерогенеза, Россия, 115478, Москва, Каширское шоссе, 24


Список литературы

1. Corless C.L., Heinrich M.C. Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol 2008;3:557–86.

2. Joensuu H., Hohenberger P., Corless C.L. Gastrointestinal stromal tumour. Lancet 2013;382(9896):973–83.

3. Mazur M.T., Clark H.B. Gastric stromal tumors: Reappraisal of histogenesis. Am J Surg Pathol 1983;7(6):507–19.

4. Sarlomo-Rikala M., Kovatich A.J., Barusevicius A., Miettinen M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11(8):728–34.

5. Hirota S., Isozaki K., Moriyama Y. et al. Gain of function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279(5350):577–80.

6. Hasegawa T., Matsuno Y., Shimoda T., Hirohashi S. Gastrointestinal stromal tumor: consistent CD117 immunostaining for diagnosis, and prognostic classification based on tumor size and MIB-1 grade. Hum Pathol 2002;33(6):669–76.

7. Sircar K., Hewlett B.R., Huizinga J.D. et al. Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am J Surg Pathol 1999;23(4):377–89.

8. Ogasawara N., Tsukamoto T., Inada K. et al. Frequent c-KIT gene mutations not only in gastrointestinal stromal tumors but also in interstitial cells of Cajal in surrounding normal mucosa. Cancer Lett 2005;230(2):199–210.

9. Miettinen M., Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 2006;23(2):70–83.

10. Rubin B.P., Heinrich M.C., Corless C.L. Gastrointestinal stromal tumour. Lancet 2007;369(9574):1731–41.

11. Casali P.G., Blay J.Y. Gastrointestinal stromal tumors: ESMO Clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;Suppl 5: v98–102.

12. Снигур П.В., Анурова О.А., Петровичев Н.Н., Сельчук В.Ю. Клинико-морфологические особенности стромальных опухолей желудочно-кишечного тракта. Вопросы онкологии 2003;49 (6): 705–10. [Snigur P.V., Anurova O.A., Petrovichev N.N., Selchuk V.Yu. Clinical and morphological peculiarities of gastrointestinal stromal tumors. Voprosy onkologii = Oncology Issues 2003;49(6):705–10. (In Russ.)].

13. Стилиди И.С., Архири П.П., Анурова О.А., Мазуренко Н.Н. Стромальные опухоли желудочно-кишечного тракта: клинико-морфологические особенности, патогенез и современные подходы к лечению. Вестник Российской академии медицинских наук 2010;2:46–52. [Stilidi I.S., Arkhiri P.P., Anurova O.A., Mazurenko N.N. Gastrointestinal stromal tumors: clinical and morphological peculiarities, pathogenesis, and modern approaches to treatment. Vestnik Rossiyskoy akademii meditsinskikh nauk = Herald of the Russian Academy of Medical Sciences 2010;2:46–52. (In Russ.)].

14. Joensuu H., Roberts P.J., SarlomoRikala M. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344(14):1052–56.

15. Postow M.A., Robson M.E. Inherited gastrointestinal stromal tumor syndromes: mutations, clinical features, and therapeutic implications. Clin Sarcoma Res 2012;2(1):16.

16. Janeway K.A., Albritton K.H., Van Den Abbeele A.D. et al. Sunitinib treatment in pediatric patients with advanced GIST following failure of imatinib. Pediatr Blood Cancer 2009;52(7):767–71.

17. Bennett J.J., Rubino M.S. Gastrointestinal stromal tumors of the stomach. Surg Oncol Clin N Am 2012;21(1):21–33.

18. Цыганова И.В., Анурова О.А., Мазуренко Н.Н. Морфологические особенности и критерии прогноза стромальных опухолей желудочно-кишечного тракта. Архив патологии 2011;73(6):37–42. [Tsyganova I.V., Anurova O.A., Mazurenko N.N. Morphological peculiarities and prognosis criteria of gastrointestinal stromal tumors. Arkhiv patologii = Pathology Archive 2011; 73 (6):37–42. (In Russ.)].

19. Анурова О.А., Снигур П.В., Филиппова Н.А., Сельчук В.Ю. Морфологическая характеристика стромальных опухолей желудочно-кишечного тракта. Архив патологии 2006;1(68):10–13. [Anurova O.A., Snigur P.V., Filippova N.A., Selchuk V.Yu. Morphological characteristics of gastrointestinal stromal tumors. Arkhiv patologii = Pathology Archive 2006;1(68): 10–13. (In Russ.)].

20. Rammohan A., Sathyanesan J., Rajendran K. et al. A gist of gastrointestinal stromal tumors: a review. World J Gastrointest Oncol 2013;5(6):102–12.

21. Agaimy A., Wünsch P.H., Hofstaedter F. et al. Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol 2007;31(1):113–20.

22. Kawanowa K., Sakuma Y., Sakurai S. et al. High incidence of microscopic gastrointestinal

23. stromal tumors in the stomach. Hum Pathol 2006;37(12):1527–35.

24. Agaimy A. Gastrointestinal stromal tumors (GIST) from risk stratification systems to the new TNM proposal: more questions than answers? A review emphasizing the need for a standardized GIST reporting. Int J Clin Exp Pathol 2010;3(5):461–71.

25. Gold J.S., Gönen M., Gutiérrez A. et al. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. Lancet Oncol 2009;10(11):1045–52.

26. Besmer P., Murphy J.E., George P.C. et al. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 1986;320(6061):415–21.

27. Beadling C., Jacobson-Dunlop E., Hodi F.S. et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 2008:14(21):6821–8.

28. Heinrich M.C., Corless C.L., Duensing A. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299(5607):708–10.

29. Hirota S., Ohashi A., Nishida T. et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 2003;25(3):660–7.

30. Lasota J., Miettinen M. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol 2006;23(2):91–102.

31. Medeiros F., Corless C.L., Duensing A. et al. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol 2004;28(7):889–94.

32. West R.B., Corless C.L., Chen X. et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFR-α mutation status. Am J Pathol 2004;165(1):107–13.

33. Espinosa I., Lee C.H., Kim M.K. et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 2008;32(2):210–8.

34. Wang C., Jin M.S., Zou Y.B. et al. Diagnostic significance of DOG-1 and PKC-θ expression and c-Kit/PDGFRA mutations in gastrointestinal stromal tumours. Scand J Gastroenterol 2013;48(9):1055–65.

35. Agaimy A., Wang L.M., Eck M. et al. Loss of DOG-1 expression associated with shift from spindled to epithelioid morphology in gastric gastrointestinal stromal tumors with KIT and platelet-derived growth factor receptor α mutations. Ann Diagn Pathol 2013;17(2):187–91.

36. Kim K.M., Kang D.W., Moon W.S. et al. PKC theta expression in gastrointestinal stromal tumor. Mod Pathol 2006;19(11): 1480–6.

37. Yang J., Du Х., Lazar A.J. et al. Genetic aberrations of gastrointestinal stromal tumors. Cancer 2008;113(7):1532–43.

38. Perrone F., Tamborini E., Dagrada G.P. et al. 9p21 locus analysis in high-risk gastrointestinal stromal tumors characterized for c-KIT and platelet-derived growth factor receptor alpha gene alterations. Cancer 2005;104(1):159–69.

39. Бардина Е.М., Беляков И.С., Цыганова И.В. и др. Генетические нарушения в стромальных опухолях ЖКТ. Вопросы онкологии 2009;55:5–6. [Bardina E.M., Belyakov I.S., Tsyganova I.V. et al. Genetic disorders in gastrointestinal stromal tumors. Voprosy onkologii = Oncology Issues 2009;55:5–6. (In Russ.)].

40. Gunawan B., von Heydebreck A., Sander B. et al. An oncogenetic tree model in gastrointestinal stromal tumours (GISTs) identifies different pathways of cytogenetic evolution with prognostic implications. J Pathol 2007;211(4):463–70.

41. Schaefer I.M., Delfs C., Cameron S. et al. Chromosomal aberrations in primary PDGFRA-mutated gastrointestinal stromal tumors. Hum Pathol 2014;45(1): 85–9.

42. Mazurenko N.N., Bardina E.M., Beliakov I.S., Tsyganova I.V. Analysis of KIT and PDGFR-α mutations and microsatellite DNA alterations in gastrointestinal stromal tumors. Eur J Cancer 2009;2:403.

43. Zhang Y., Cao H., Wang M. et al. Loss of chromosome 9p21 and decreased p16 expression correlate with malignant gastrointestinal stromal tumor. World J Gastroenterol 2010;16(37):4716–20.

44. Kaifi J.T., Wagner M., Schurr P.G. et al. Allelic loss of Hox11L1 gene locus predicts outcome of gastrointestinal stromal tumors. Oncol Rep 2006;16(4):915–9.

45. Haller F., Gunawan B., von Heydebreck A. et al. Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin Cancer Res 2005;11(18):6589–97.

46. Wallander M.L., Layfield L.J., Tripp S.R., Schmidt R.L. Gastrointestinal stromal tumors: clinical significance of p53 expression, MDM2 amplification, and KIT mutation status. Appl Immunohistochem Mol Morphol 2013;21(4):308–12.

47. Mol C.D., Lim K.B., Sridhar V. et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem 2003;278(34):31461–4.

48. Rönnstrand L. Signal transduction via the stem cell factor receptor/с-Kit. Cell Mol Life Sci 2004;61(19–2):2535–48.

49. Joensuu H., Rutkowski P., Nishida T. et al. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence. J Clin Oncol 2015;33(6):634–42.

50. Беляков И.С., Анурова О.А., Снигур П.В. и др. Мутации генов с-KIT и PDGFRA и клинико-морфологические особенности стромальных опухолей желудочно-кишечного тракта. Вопросы онкологии 2007;53(6):677–81. [Belyakov I.S., Anurova O.A., Snigur P.V. et al. Mutations of the с-KIT and PDGFRA genes and clinical and morphological peculiarities of gastrointestinal stromal tumors. Voprosy onkologii = Oncology Issues 2007;53(6):677–81. (In Russ.)].

51. Мазуренко Н.Н., Беляков И.С., Цыганова И.В. и др. Значение молекулярно-генетических маркеров для прогноза и лечения стромальных опухолей желудочно-кишечного тракта. Достижения и перспективы лекарственного лечения злокачественных опухолей. Этюды химиотерапии III. М.: Фармарус Принт Медиа 2011. C. 111–26. [Mazurenko N.N., Belyakov I.S., Tsyganova I.V. et al. Significance of molecular and genetic markers for prognosis and treatment of gastrointestinal stromal tumors. Achievements and Prospects of Medicinal Treatment of Malignant Tumors. Etudi himioterapii = Chemotherapy Studies III. Moscow: Pharmarus Print Media, 2011; р. 111–26. (In Russ.)].

52. Цыганова И.В., Беляков И.С., Анурова О.А., Мазуренко Н.Н. Прогностическое значение мутаций KIT и PDGFRA в гастроинтестинальных стромальных опухолях. Молекулярная медицина 2015;2:64–70. [Tsyganova I.V., Belyakov I.S., Anurova O.A., Mazurenko N.N. Prognostic significance of the KIT and PDGFRA mutations in gastrointestinal stromal tumors. Molekulyarnaya meditsina = Molecular Medicine 2015;2:64–70. (In Russ.)].

53. Ma Y., Cunningham M.E., Wang X. et al. Inhibition of spontaneous receptor phosphorylation by residues in a putative alpha-helix in the KIT intracellular juxtamembrane region. J Biol Chem 1999;274(19):13399–402.

54. Wardelmann E., Losen I., Hans V. et al. Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer 2003;106(6):887–95.

55. Corless C.L., McGreevey L., Town A. et al. KIT gene deletions at the intron 10-exon 11 boundary in GI stromal tumors. J Mol Diagn 2004;6(4):366–70.

56. Chen L.L., Sabripour M., Wu E.F. et al. A mutation-created novel intra-exonic premRNA splice site causes constitutive activation of KIT in human gastrointestinal stromal tumors. Oncogene 2005;24(26):4271–80.

57. Bachet J.B., Hostein I., Le Cesne A. et al. Prognosis and predictive value of KIT exon 11 deletion in GISTs. Br J Cancer 2009;101(1): 7–11.

58. Lasota J., Miettinen M. KIT exon 11 deletion-inversions represent complex mutations in gastrointestinal stromal tumors. Cancer Genet Cytogenet 2007;175(1):69–72.

59. Terada T. Primary multiple extragastrointestinal stromal tumors of the omentum with different mutations of c-kit gene. World J Gastroenterol 2008;14(47):7256–9.

60. Liu N.N., Ohkouchi M., Hashikura Y. et al. Extracellular domain c-kit mutation with duplication of Ser501Ala502 found in gastrointestinal stromal tumors is more imatinib- and nilotinib-sensitive than that with duplication of Ala502Tyr503. Lab Invest 2013;93(5):502–7.

61. Künstlinger H., Huss S., MerkelbachBruse S. et al. Gastrointestinal stromal tumors with KIT exon 9 mutations: Update on genotype-phenotype correlation and validation of a high-resolution melting assay for mutational testing. Am J Surg Pathol 2013;37(11):1648–59.

62. Lasota J., Corless C.L., Heinrich M.C. et al. Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod Pathol 2008;21(4):476–84.

63. Yamanoi K., Higuchi K., Kishimoto H. et al. Multiple gastrointestinal stromal tumors with novel germline c-kit gene mutation, K642T, at exon 13. Hum Pathol 2014;45(4):884–8.

64. Cho S., Kitadai Y., Yoshida S. et al. Genetic and pathologic characteristics of gastrointestinal stromal tumors in extragastric lesions. Int J Mol Med 2006;18(6):1067–71.

65. Kinoshita K., Hirota S., Isozaki K. et al. Characterization of tyrosine kinase I domain c-kit gene mutation Asn655Lys newly found in primary jejunal gastrointestinal stromal tumor. Am J Gastroenterol 2007;102(5): 1134–6.

66. Graham J., Debiec-Rychter M., Corless C.L. et al. Imatinib in the management of multiple gastrointestinal stromal tumors associated with a germline KIT K642E mutation. Arch Pathol Lab Med 2007;131(9):1393–6.

67. Lasota J., vel Dobosz A.J., Wasag B. et al. Presence of homozygous KIT exon 11 mutations is strongly associated with malignant clinical behavior in gastrointestinal stromal tumors. Lab Invest 2007;87(10):1029–41.

68. Wardelmann E., Hrychyk A., MerkelbachBruse S. et al. Association of platelet-derived growth factor receptor alpha mutations with gastric primary site and epithelioid or mixed cell morphology in gastrointestinal stromal tumors. J Mol Diagn 2004;6(3):197–204.

69. Künstlinger H., Binot E., MerkelbachBruse S. et al. High-resolution melting analysis is a sensitive diagnostic tool to detect imatinibresistant and imatinib-sensitive PDGFRA exon 18 mutations in gastrointestinal stromal tumors. Hum Pathol 2014;45(3):573–82.

70. Huss S., Künstlinger H., Wardelmann E. et al. A subset of gastrointestinal stromal tumors previously regarded as wild-type tumors carries somatic activating mutations in KIT exon 8 (p.D419del). Mod Pathol 2013;26(7):1004–12.

71. Bahlawane C., Eulenfeld R., Wiesinger M.Y. et al. Constitutive activation of oncogenic PDGFRα-mutant proteins occurring in GIST patients induces receptor mislocalisation and alters PDGFRα signalling characteristics. Cell Commun Signal 2015;13(1):21.

72. Neuhann T.M., Mansmann V., Merkelbach-Bruse S. et al. A novel germline KIT mutation (p.L576P) in a family presenting with juvenile onset of multiple gastrointestinal stromal tumors, skin hyperpigmentations, and esophageal stenosis. Am J Surg Pathol 2013;37(6):898–905.

73. Bachet J.B., Landi B., Laurent-Puig P. et al. Diagnosis, prognosis and treatment of patients with gastrointestinal stromal tumour (GIST) and germline mutation of KIT exon 13. Eur J Cancer 2013;49(11):2531–41.

74. Keun P.C., Lee E.J., Kim M. et al. Prognostic stratification of high risk gastrointestinal stromal tumors in the era of targeted therapy. Ann Surg 2008;247(6):1011–8.

75. Emile J.F., Brahimi S., Coindre J.M. et al. Frequencies of KIT and PDGFRA mutations in the MolecGIST prospective populationbased study differ from those of advanced GISTs. Med Oncol 2012;29(3):1765–72.

76. Wozniak A., Rutkowski P., Schöffski P. et al. Tumor genotype is an independent prognostic factor in primary gastrointestinal stromal tumors of gastric origin: A European

77. multicenter analysis based on ConticaGIST. Clin Cancer Res 2014;20(23):6105–16.

78. Corless C.L., Ballman K.V., Antonescu C.R. et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. J Clin Oncol 2014;32(15):1563–70.

79. Agaram N.P., Wong G.C., Guo T. et al. V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 2008;47(10):853–9.

80. Falchook G.S., Trent J.C., Heinrich M.C. et al. BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 2013;4(2):310–5.

81. Tarn C., Rink L., Merkel E. et al. Insulinlike growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA 2008;105(24):8387–92.

82. Daniels M., Lurkin I., Pauli R. et al. Spectrum of KIT/PDGFRA/BRAF mutations and phosphatidylinositol-3-kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett 2011;312(1): 43–54.

83. Miettinen M., Fetsch J.F., Sobin L.H., Lasota J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol 2006;30(1):90–6.

84. Mussi C., Schildhaus H.U., Gronchi A.et al. Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin Cancer Res 2008;14(14):4550–5.

85. Carney J.A., Stratakis C.A. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002;108(2):132–9.

86. Pasini B., McWhinney S.R., Bei T. et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008;16(1):79–88.

87. Janeway K.A., Kim S.Y., Lodish M. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 2011;108(1):314–8.

88. Miettinen M., Killian J.K., Wang Z.F. et al. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol 2013;37(2):234–40.

89. Wagner A.J., Remillard S.P., Zhang Y.X. et al. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol 2013;26(2):289–94.

90. Pantaleo M.A., Astolfi A., Urbini M. et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet 2014;22(1):32–9.

91. Oudijk L., Gaal J., Korpershoek E. et al. SDHA mutations in adult and pediatric wildtype gastrointestinal stromal tumors. Mod Pathol 2013;26(3):456–63.

92. Debiec-Rychter M., Sciot R., Le Cesne A. et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 2006;42(8):1093–103.

93. Heinrich M.C., Owzar K., Corless C.L. et al. Correlation of Kinase Genotype and Clinical Outcome in the North American Intergroup Phase III Trial of Imatinib Mesylate for Treatment of Advanced Gastrointestinal Stromal Tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol 2008;26(33):5360–7.

94. Duensing S., Duensing A. Targeted therapies of gastrointestinal stromal tumors (GIST) – the next frontiers. Biochem Pharmacol 2010;80(5):575–83.

95. Pierotti М.А., Tamborini Е., Negr T. et al. Targeted therapy in GIST: in silico modeling for prediction of resistance. Nat Rev Clin Oncol 2011;8(3):161–70.

96. Nakagomi N., Hirota S. Juxtamembranetype c-kit gene mutation found in aggressive systemic mastocytosis induces imatinibresistant constitutive KIT activation. Lab Invest 2007;87(4):365–71.

97. Antonescu C.R., Besmer P., Guo T. et al. Acquired resistance to imatinib in astrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005;11(11):4182–90.

98. Gramza A.W., Corless C.L., Heinrich M.C. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res 2009;15(24):7510–8.

99. Wardelmann E., Merkelbach-Bruse S., Pauls K. et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006;12(6):1743–9.

100. Liegl B., Kepten I., Le C. et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 2008;216(1):64–74.

101. Kobayashi S., Boggon T.J., Dayaram T. et al. EGFR mutation and resistance of nonsmall-cell lung cancer to gefitinib. N Engl J Med 2005;352(8):786–92.

102. O'Hare T., Eide C.A., Tyner J.W. et al. SGX393 inhibits the CML mutant BcrAblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib. Proc Natl Acad Sci USA 2008;105(14): 5507–12.

103. Joensuu H. Second line therapies for the treatment of gastrointestinal stromal tumor. Curr Opin Oncol 2007;19(4):353–8.

104. Hopkins T.G., Marples M., Stark D. Sunitinib in the management of gastrointestinal stromal tumours (GISTs). Eur J Surg Oncol 2008;34(8):844–50.

105. Demetri G.D., Heinrich M.C., Fletcher J.A. et al. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res 2009;18(15):5902–9.

106. Heinrich M.C., George S., Bauer S. et al. Optimizing the treatment of gastrointestinal stromal tumors: the role of tumor genotyping, imatinib blood level testing and new therapeutic strategies. Educational book. ASCO, 2009; р. 454–60.

107. Hsueh Y.S., Lin C.L., Chiang N.J. et al. Selecting tyrosine kinase inhibitors for gastrointestinal stromal tumor with secondary KIT activation-loop domain mutations. PLoS One 2013;8(6).

108. Blay J.Y., Shen L., Kang Y.K. et al. Nilotinib versus imatinib as first-line therapy for patients with unresectable or metastatic gastrointestinal stromal tumours (ENESTg1): a randomised phase 3 trial. Lancet Oncol 2015;16(5):550–60.

109. Janeway K.A., Albritton K.H., Van Den Abbeele A.D. et al. Sunitinib treatment in pediatric patients with advanced GIST following failure of imatinib. Pediatr Blood Cancer 2009;52(7):767–71.

110. Quek R., George S. Update on the treatment of gastrointestinal stromal tumors (GISTs): role of imatinib. Biologics 2010;4: 19–31.

111. Singeltary B., Ghose A., Sussman J. et al. Durable response with a combination of imatinib and sorafenib in KIT exon 17 mutant gastrointestinal stromal tumor. J Gastrointest Oncol 2014;5(1):E27–9.

112. Aprile G., Macerelli M., Giuliani F. Regorafenib for gastrointestinal malignancies: from preclinical data to clinical results of a novel multi-target inhibitor. BioDrugs 2013;27(3):213–24.

113. Ferraro D., Zalcberg J. Regorafenib in gastrointestinal stromal tumors: clinical evidence and place in therapy. Ther Adv Med Oncol 2014;6(5):222–8.

114. Casali P.G., Blay J.Y. Gastrointestinal stromal tumors: ESMO Clinical practice guidelines for diagnosis, treatment and followup. Ann Oncol 2010;Suppl 5:98–102.

115. Harlan L.C., Eisenstein J., Russell M.C. et al. Gastrointestinal stromal tumors: Treatment patterns of a population-based sample. J Surg Oncol 2015;111(6):702–7.


Рецензия

Для цитирования:


Мазуренко Н.Н., Цыганова И.В. Молекулярно-генетические особенности и маркеры гастроинтестинальных стромальных опухолей. Успехи молекулярной онкологии. 2015;2(2):29-40. https://doi.org/10.17650/2313-805X.2015.2.2.29-40

For citation:


Mazurenko N.N., Tsyganova I.М. Molecular features and genetic markers of gastrointestinal stromal tumors. Advances in Molecular Oncology. 2015;2(2):29-40. (In Russ.) https://doi.org/10.17650/2313-805X.2015.2.2.29-40

Просмотров: 1542


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)