Prognostic significance of PD-L1 expression and evaluation of microsatellite instability status in patients with retroperitoneal leiomyosarcomas
https://doi.org/10.17650/2313-805X-2019-6-3-37-48
Abstract
Background. Leiomyosarcoma is one of the most common types of soft tissue sarcomas. Radical surgical resection with subsequent adjuvant chemotherapy remain the most effective treatment approach. Immunotherapy based on inhibition of PD-L1 (programmed death ligand 1) or its receptor PD1 (programmed death 1) is considered a promising treatment option. Level of PD-L1 expression in tumor cells and presence of microsatellite instability (МSI) could be considered prognostic and predictive markers of disease progression and effectiveness of immunotherapy.
The study objective is to determine PD-L1 expression level and МSI status in patients with retroperitoneal leiomyosarcomas and evaluate their effect on overall and recurrence-free survival.
Materials and methods. The study included 57 patients with retroperitoneal leiomyosarcomas who underwent surgical or combination treatment. Analysis of clinical and morphological characteristics was performed; results of surgical treatment were researched. Evaluation of PD-L1 expression and MSI status was performed using immunohistochemical and molecular genetic analysis.
Results. PD-L1 expression and MSI status were evaluated in 41 patients of 57. In 10 (24 %) of 41 cases, positive PD-L1 expression was observed (expression level 3–50 %). In 1 (2.4 %) patient, the primary tumor and metastatic lesion had low MSI level (MSI-low, MSI-L). Median follow-up was 31 months. In patients with positive PD-L1 expression, higher Ki-67 proliferative index was observed compared to patients with PD-L1 negative tumors (58.8 and 47.8 % respectively; р = 0.02), as well as significantly lower median overall survival for grade II tumors (30 and 105 months; p = 0.043). In grade III leiomyosarcomas, a trend towards lower median overall survival in patients with PD-L1‑negative tumors (31.0 months) compared to patients with PD-L1 expression (61.2 months) (р = 0.11) was observed.
Conclusion. Among patients with retroperitoneal leiomyosarcomas, positive expression of PD-L1 was observed in 24 % (10 / 41) of cases and MSI-low status was found in 2.4 % (1 / 41) of cases. In patients with grade 2 tumors, positive PD-L1 expression is associated with significantly lower overall survival. PD-L1 expression in patients with retroperitoneal leiomyosarcomas could be considered a prognostic marker and a potential therapeutic target.
About the Authors
V. Е. BugaevRussian Federation
24 Kashirskoe Shosse, Moscow 115478
M. P. Nikulin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
N. I. Pospekhova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
V. M. Safronova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
N. V. Kokosadze
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Ya. A. Bozhchenko
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
S. N. Nered
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
L. N. Lyubchenko
Russian Federation
24 Kashirskoe Shosse, Moscow 115478,
Build. 2, 8 Trubetskaya St., Moscow 119991
I. S. Stilidi
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Lamm W., Natter C., Schur S. et al. Distinctive outcome in patients with nonuterine and uterine leiomyosarcoma. BMC Cancer 2014;14:981. DOI: 10.1186/1471-2407-14-981.
2. Jacobs A.J., Michels R., Stein J., Levin A.S. Improvement in overall survival from extremity soft tissue sarcoma over twenty years. Sarcoma 2015;2015:279601. DOI: 10.1155/2015/279601.
3. Emens L.A., Emens L.A., Butterfield L.H., Hodi F.S. Jr et al. Cancer immunotherapy trials: leading a paradigm shift in drug development. J Immunother Cancer 2016;4:42. DOI: 10.1186/s40425-016-0146-9.
4. Chen D.S., Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39(1):1–10. DOI: 10.1016/j.immuni.2013.07.012.
5. Reiss K.A., Forde P.M., Brahmer J.R. Harnessing the power of the immune system via blockade of PD-1 and PD-L1: a promising new anticancer strategy. Immunotherapy 2014;6(4):459–75. DOI: 10.2217/imt.14.9.
6. Zhang Y., Kang S., Shen J. et al. Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) Expression in epithelialoriginated cancer: a meta-analysis. Medicine 2015;94(6):515. DOI: 10.1097/MD.0000000000000515.
7. Topalian S.L., Hodi F.S., Brahmer J.R. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366(26):2443–54. DOI: 10.1056/NEJMoa1200690.
8. Paydas S., Bagir E.K., Deveci M.A., Gonlusen G. Clinical and prognostic significance of PD-1 and PD-L1 expression in sarcomas. Med Oncol 2016;33(8):93. DOI: 10.1007/s12032-016-0807-z.
9. Chen K., Cheng G., Zhang F. et al. Prognostic significance of programmed death-1 and programmed death-ligand 1 expression in patients with esophageal squamous cell carcinoma. Oncotarget 2016;7(21):30772. DOI: 10.18632/oncotarget.8956.
10. Le D.T., Uram J.N., Wang H. et al. PD-1 blockade in tumors with mismatchrepair deficiency. N Engl J Med 2015;372(26):2509–20. DOI: 10.1056/NEJMoa1500596.
11. Dudley J.C., Lin M.T., Le D.T., Eshleman J.R. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 2016;22(4):813–20. DOI: 10.1158/1078-0432.CCR-15-1678.
12. Naboush A., Roman C.A.J., Shapira I. Immune checkpoint inhibitors in malignancies with mismatch repair deficiency: a review of the state of the current knowledge. J Investig Med 2017;65(4):754–8. DOI: 10.1136/jim-2016-000342.
13. Schmidt L.H., Kümmel A., Görlich D. et al. PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PloS One 2015;10(8):0136023. DOI: 10.1371/journal.pone.0136023.
14. Kostine M., Briaire-de Bruijn I.H., Cleven A.H.G. et al. Increased infiltration of M2-macrophages, T-cells and PD-L1 expression in high grade leiomyosarcomas supports immunotherapeutic strategies. Oncoimmunology 2018;7(2):1386828. DOI: 10.1080/2162402X.2017.1386828.
15. Kawaguchi K., Oda Y., Takahira T. et al. Microsatellite instability and hMLH1 and hMSH2 expression analysis in soft tissue sarcomas. Oncol Rep 2005;13(2):241–6.
16. Campanella N.C., Penna V., Ribeiro G. et al. Absence of microsatellite instability in soft tissue sarcomas. Pathobiology 2015;82(1):36–42. DOI: 10.1159/000369906.
17. Popat S., Hubner R., Houlston R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005;23(3):609–18.
18. D’Angelo S.P., Mahoney M.R., van Tine B.A. et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two openlabel, non-comparative, randomised, phase 2 trials. Lancet Oncol 2018;19(3):416–26. DOI: 10.1016/S1470-2045(18)30006-8.
19. Tawbi H.A. Burgess M., Bolejack V. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017;18(11):1493–501. DOI: 10.1016/S1470-2045(17)30624-1.
20. Wooster R., Cleton-Jansen A.M., Collins N. Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet 1994;6(2):152. DOI: 10.1038/ng0294-152.
21. Saito T., Oda Y., Kawaguchi K. et al. Possible association between tumorsuppressor gene mutations and hMSH2/ hMLH1 inactivation in alveolar soft part sarcoma. Hum Pathol 2003;34(9):841–9. DOI: 10.1016/s0046-8177(03)00343-5.
22. Ericson K., Engellau J., Persson A. et al. Immunohistochemical loss of the DNA mismatch repair proteins MSH2 and MSH6 in malignant fibrous histiocytomas. Sarcoma 2004;8(4):123–7. DOI: 10.1080/13577140400010856.
23. Rucińska M., Kozłowski L., Pepiński W. et al. High grade sarcomas are associated with microsatellite instability (chromosom 12) and loss of heterozygosity (chromosom 2). Med Sci Monit 2005;11(2):65–8.
Review
For citations:
Bugaev V.Е., Nikulin M.P., Pospekhova N.I., Safronova V.M., Kokosadze N.V., Bozhchenko Ya.A., Nered S.N., Lyubchenko L.N., Stilidi I.S. Prognostic significance of PD-L1 expression and evaluation of microsatellite instability status in patients with retroperitoneal leiomyosarcomas. Advances in Molecular Oncology. 2019;6(3):37-48. (In Russ.) https://doi.org/10.17650/2313-805X-2019-6-3-37-48