Preview

Advances in Molecular Oncology

Advanced search

The importance of preexisting drug resistance due to overexpression of P-glycoprotein for the formation of resistance to bortezomib

https://doi.org/10.17650/2313-805X-2020-7-1-23-31

Abstract

Objective of the study. In our work we investigated the effect of pre-existing drug resistance by the mechanism of activation of ABC transporters – P-glycoprotein (Pgp) overexpression – on the development of resistance to the proteasome inhibitor bortezomib.

Materials and methods. Cultures RPMI8226 and K562 / i-S9 (with Pgp overexpression) and their bortezomib-resistant sublines RPMI8226 / btz-6 and K562 / i-S9vlc were used as models. The methods used were MTT test, flow cytometry, Western blot and real-time polymerase chain reaction using the Human Signal Transduction Pathway Finder system.

Results. The expression of the main PI3K-AKT and NF-κB signaling pathways did not change in RPMI8226 / btz-6 subline cells. However, AKT kinase expression was significantly increased and PTEN protein expression was reduced in K562 / i-S9vlc cells with Pgp-overexpression. Significant changes in gene expression (42 %) were found in RPMI8226 / btz-6 cells related to a number of main signaling pathways in the tumor cell, namely: activation of 3–4 genes in signaling pathways related to hypoxia, oxidative stress, PPAR and p53. The highest activation in these cells was found in the TGFβ signaling pathway. In resistant K562 / i-S9vlc cells, expression of only 5 genes (10 %) increased: Fas, HMOX1, CPT2, ICAM, and SOCS3. Three genes were also identified that changed in both resistant sublines: Fas, HMOX1 and CPT2. Further, we showed that in the RPMI8226 / btz-6 subline, along with changes in the expression of signal transduction genes, there is a large pool of CD138-negative cells, and in the K562 / i-S9vlc subline, the number of cells expressing CD34 increases and the number of CD13 decreases.

Conclusion. We found that different signaling pathways are involved in the formation of resistance to bortezomib in the absence of Pgp expression and its overexpression. In addition, a cell line without activated resistance pathways requires more extensive rearrangements in the signal system to acquire resistance to bortezomib. However, in both cases, bortezomib leads to a change in the immunophenotype of the cells – to the appearance of dedifferentiated subpopulations.

About the Authors

L. A. Laletina
Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Build. 15, 24 Kashirskoe Shosse, Moscow 115478



N. I. Moiseeva
Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Build. 15, 24 Kashirskoe Shosse, Moscow 115478



A. F. Karamysheva
Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Build. 15, 24 Kashirskoe Shosse, Moscow 115478



References

1. Stavrovskaya A.A., Stromskaya T.P. Transporters of ABC protein superfamily and multidrug resistance of tumor cells. Biokhimiya = Bioche mistry 2008;73(5):735–50. (In Russ.).

2. Robak P., Drozdz I., Szemraj J. et al. Drug resistance in multiple myeloma. Cancer Treat Rev 2018;70;199–208. DOI: 10.1016/J.CTRV.2018.09.001.

3. Muz B., Kusdono H.D., Azab F. et al. Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leuk Lymphoma 2017;58(12):2916–25. DOI: 10.1080/10428194.2017.1319052.

4. Besse A., Stolze S.C., Rasche L. et al. Carfilzomib resistance due to ABCB1/ MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia 2018;32(2):391–401. DOI: 10.1038/leu.2017.212.

5. McCubrey J.A., Steelman L.S., Abrams S.L. et al. Roles of the RAF/ MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 2006;46:249–79. DOI: 10.1016/j.advenzreg.2006.01.004.

6. Traenckner E.B., Wilk S., Baeuerle P.A. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 1994;13(22):5433–41.

7. Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000;18:621–63. DOI: 10.1146/annurev.immunol.18.1.621.

8. Akl M.R., Nagpal P., Ayoub N.M. et al. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 2015;6(30):28693–715. DOI: 10.18632/oncotarget.4981.

9. Laletina L.A., Moiseeva N.I., Klimova D.A., Stavrovskaya A.A. The role of АВС transporters in drug resistance to bortezomib in multiple myeloma. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2019;6(1):49–55. (In Russ.). DOI: 10.17650/2313-805X-2019-6-1-49-56.

10. Панищева Л.А., Какпакова Е.С., Рыбалкина Е.Ю., Ставровская А.А. Влияние протеасомного ингибитора бортезомиба на экспрессию генов множественной лекарственной устойчивости и активность киназы. Биохимия 2011;76(9):1238–47.

11. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Anal Biochem 1976;72(2):248–54. DOI: 10.1006/abio.1976.9999.

12. Копнин Б.П. Энциклопедия клинической онкологии. M.: РЛС-Пресс, 2004. C. 34–53.

13. Щербакова Е.А., Стромская Т.П., Рыбалкина Е.Ю., Ставровская A.A. Влияние повышения активности гена/ белка опухолевого супрессора PTEN на чувствительность малигнизированных клеток к химиотерапевтическим препаратам. Биологические мембраны 2007;24:143–50.

14. Fujita T., Doihara H., Washio K. et al. Proteasome inhibitor bortezomib increases PTEN expression and enhances trastuzumab-induced growth inhibition in trastuzumab-resistant cells. Anticancer Drugs 2006;17(4): 455–62. DOI: 10.1097/01.cad.0000198910.90819.06.

15. Hideshima T., Ikeda H., Chauhan D. et al. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 2009;114(5):1046–52. DOI: 10.1182/blood-2009-01-199604.

16. Matsumoto T., Abe M. TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone 2011;48(1):129–34. DOI: 10.1016/j.bone.2010.05.036.

17. Frassanito M., De Veirman K., Desantis V. et al. Halting pro-survival autophagy by TGFβ inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients. Leukemia 2016;30:640–8. DOI: 10.1038/leu.2015.289.

18. Nakagawa Y., Ashihara E., Yao H. Multiple myeloma cells adapted to long-exposure of hypoxia exhibit stem cell characters with TGF-β/Smad pathway activation. Biochem Biophys Res Commun 2018;496(2):490–6. DOI: 10.1016/j.bbrc.2018.01.034.

19. Matsui W., Wang Q., Barber J.P. et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008;68(1):190–7. DOI: 10.1158/0008-5472.CAN-07-3096.

20. Matsui W., Huff C.A., Wang Q. et al. Characterization of clonogenic multiple myeloma cells. Blood 2004;103(6):2332–6. DOI: 10.1182/blood-2003-09-3064.

21. Palumbo A., Avet-Loiseau H., Oliva S. et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015;33(26):2863–9. DOI: 10.1200/JCO.2015.61.2267.

22. Reghunathan R., Bi C., Liu S.C. et al. Clonogenic multiple myeloma cells have shared stemness signature associated with patient survival. Oncotarget 2013;4(8):1230–40. DOI: 10.18632/oncotarget.1145.

23. Ramania V.C., Sanderson R.D. Chemotherapy stimulates syndecan-1 shedding: a potentially negative effect of treatment that may promote tumor relapse. Matrix Biol 2014;35:215–22. DOI: 10.1016/j.matbio.2013.10.005.

24. Bandari S.K., Purushothaman A., Ramani V.C. et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 2018;(65):104–18. DOI: 10.1016/j.matbio.2017.09.001.

25. Inoue T., Swain A., Nakanishi Y., Sugiyama D. Multicolor analysis of cell surface marker of human. Anticancer Res 2014;34(8):4539–50.

26. Kamano H., Ohnishi H., Tanaka T. et al. Effects of the antisense v-myb’ expression on K562 human leukemia cell proliferation and differentiation. Leuk Res 1990;14(10):831–9. DOI: 10.1016/0145-2126(90)90171-5.


Review

For citations:


Laletina L.A., Moiseeva N.I., Karamysheva A.F. The importance of preexisting drug resistance due to overexpression of P-glycoprotein for the formation of resistance to bortezomib. Advances in Molecular Oncology. 2020;7(1):23-31. (In Russ.) https://doi.org/10.17650/2313-805X-2020-7-1-23-31

Views: 685


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)