Preview

Успехи молекулярной онкологии

Расширенный поиск

Альтернативные убиквитин-конъюгирующие ферменты Е2 регулируют эндоцитоз рецептора интерферона-1

https://doi.org/10.17650/2313-805X.2014.1.2.61-73

Аннотация

Убиквитинирование сигнальных рецепторов, вызывающее их эндоцитоз, направлено на подавление передачи сигнала. Деградация рецептора интерферона 1‑го типа (IFN1) на поверхности клетки осуществляется путем убиквитинирования комплекса лиганда с рецептором (IFNAR1). Принято считать, что убиквитинирование способствует взаимодействию между линейным мотивом комплекса IFNAR1 и соответствующими структурами системы эндоцитоза, однако механизм этого процесса остается неясным. В данной работе изучена роль двух различных акцепторных сайтов убиквитина на этом рецепторе. Предпочтительное полиубиквитинирование сайтов Lys501 и Lys525 / 526 обеспечивается посредством Lys63- или Lys48‑связанных цепей (K63‑Ub и K48‑Ub соответственно). Несмотря на то, что убиквитинлигаза SCFβTrcp E3 контролирует оба типа убиквитин-зависимого эндоцитоза IFNAR1, специфика этих процессов определяется двумя различными убиквитин-конъюгирующими ферментами E2 – Ubc13 и Cdc34. Эти ферменты могут непосредственно использоваться убиквитинлигазой SCFβTrcp E3 для создания K63‑Ub или K48‑Ub in vitro. Ubc13 принимает участие в эндоцитозе IFNAR1 путем модификации Lys501 с помощью K63‑Ub, в то время как K48‑Ub-специфичный Cdc34 изменяет эндоцитоз посредством конъюгации с убиквитином, которая происходит на Lys525 / 526. Совместный эффект обоих воздействий максимально стимулирует эндоцитоз IFNAR1, который обычно ингибирован конформационным несоответствием, связанным с наличием консервативного Pro470 во внутриклеточном домене IFNAR1. Мы предлагаем модель, в которой эффекты обоих ферментов E2 объединяют отдельные составляющие системы полиубиквитинирования, обеспечивая им взаимодействие с внутриклеточным доменом IFNAR1 при оптимальном пространственном расположении, что дает наибольшую скорость эндоцитоза рецептора.

Об авторах

Christopher J. Carbone
Отдел биологии животных; Центр сравнительной онкологии Мари Лоу, Университет Пенсильвании, 380 S. University Avenue, Hill 316, Philadelphia, PA 19104, USA
Россия


Hui Zheng
Отдел биологии животных; Центр сравнительной онкологии Мари Лоу, Университет Пенсильвании, 380 S. University Avenue, Hill 316, Philadelphia, PA 19104, USA
Россия


Serge Y. Fuchs
Отдел биологии животных; Центр сравнительной онкологии Мари Лоу, Университет Пенсильвании, 380 S. University Avenue, Hill 316, Philadelphia, PA 19104, USA
Россия


Список литературы

1. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998;17(24):7151–60.

2. Bonifacino J. S., Weissman A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 1998;14:19–57.

3. Holler D., Dikic I. Receptor endocytosis via ubiquitin-dependent and -independent pathways. Biochem Pharmacol 2004;67(6):1013–7.

4. Huangfu W. C., Fuchs S. Y. Ubiquitinationdependent regulation of signaling receptors in cancer. Genes Cancer 2010;1(7):725–34.

5. Galan J. M., Haguenauer-Tsapis R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 1997;16(19):5847–54.

6. Geetha T., Jiang J., Wooten M. W. Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 2005;20(2):301–12.

7. Duncan L. M., Piper S., Dodd R. B. et al. Lysine-63‑linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J 2006;25(8):1635–45.

8. Varghese B., Barriere H., Carbone C. J. et al. Polyubiquitination of prolactin receptor stimulates its internalization, postinternalization sorting, and degradation via the lysosomal pathway. Mol Cell Biol 2008;28(17):5275–87.

9. Barriere H., Nemes C., Lechardeur D. et al. Molecular basis of oligoubiquitindependent internalization of membrane proteins in Mammalian cells. Traffic 2006;7(3):282–97.

10. Kumar K. G., Barriere H., Carbone C. J. et al. Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis. J Cell Biol 2007;179(5):935–50.

11. Constantinescu S. N., Croze E., Wang C. et al. Role of interferon alpha / beta receptor chain 1 in the structure and transmembrane signaling of the interferon alpha / beta receptor complex. Proc Natl Acad Sci USA 1994;91(20):9602–6.

12. Colamonici O. R., Porterfield B., Domanski P. et al. Complementation of the interferon alpha response in resistant cells by expression of the cloned subunit of the interferon alpha receptor. A central role of this subunit in interferon alpha signaling. J Biol Chem 1994;269(13):9598–602.

13. Muller U., Steinhoff U., Reis L. F. et al. Functional role of type I and type II interferons in antiviral defense. Science 1994;264(5167):1918–21.

14. Kumar K. G., Krolewski J. J., Fuchs S. Y. Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor. J Biol Chem 2004;279(45):46614–20.

15. Kumar K. G., Tang W., Ravindranath A. K. et al. SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J 2003;22(20):5480–90.

16. Kumar K. G., Varghese B., Banerjee A. et al. Basal ubiquitin-independent internalization of interferon alpha receptor is prevented by Tyk2‑mediated masking of a linear endocytic motif. J Biol Chem 2008;283(27):18566–72.

17. Fuchs S. Y. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interferon Cytokine Res 2013;33(4):211–25.

18. Fuchs S. Y. Ubiquitination-mediated regulation of interferon responses. Growth Factors 2012;30(3):141–8.

19. Mosesson Y., Shtiegman K., Katz M. et al. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 2003;278(24):21323–6.

20. Parisien J. P., Lau J. F., Rodriguez J. J. et al. Selective STAT protein degradationinduced by paramyxoviruses requires both STAT1 and STAT2 but is independent of alpha / beta interferon signal transduction. J Virol 2002;76(9):4190–8.

21. Li Y., Kumar K. G., Tang W. et al. Negative regulation of prolactin receptor stability and signaling mediated by SCF(beta-TrCP) E3 ubiquitin ligase. Mol Cell Biol 2004;24(9):4038–48.

22. Xu M., Skaug B., Zeng W., Chen Z. J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 2009;36(2):302–14.

23. Soldatenkov V. A., Dritschilo A., Ronai Z., Fuchs S. Y. Inhibition of homologue of Slimb(HOS) function sensitizes human melanoma cells for apoptosis. Cancer Res 1999;59(20):5085–8.

24. Li Y., Gazdoiu S., Pan Z. Q., Fuchs S. Y. Stability of homologue of Slimb F-box protein is regulated by availability of its substrate. J Biol Chem 2004;279(12): 11074–80.

25. Liu J., HuangFu W. C., Kumar K. G. et al. Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor. Cell Host Microbe 2009;5(1):72–83.

26. Tan P., Fuchs S. Y., Chen A. et al. Recruitment of a ROC1‑CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell 1999;3(4):527–33.

27. Wu K., Kovacev J., Pan Z. Q. Priming and extending: a UbcH5 / Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 2010;37(6):784–96.

28. Topisirovic I., Gutierrez G. J., Chen M. et al. Control of p53 multimerization by Ubc13 is JNK-regulated. Proc Natl Acad Sci USA 2009;106(31):12676–81.

29. Laine A., Topisirovic I., Zhai D. et al. Regulation of p53 localization and activity by Ubc13. Mol Cell Biol 2006;26(23):8901–13.

30. Goldman L. A., Zafari M., Cutrone E. C. et al. Characterization of antihuman IFNAR-1 monoclonal antibodies: epitope localization and functional analysis. J Interferon Cytokine Res 1999;19(1):15–26.

31. Zhao G. Y., Sonoda E., Barber L. J. et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell 2007;25(5):663–75.

32. Hofmann R. M., Pickart C. M. Noncanonical MMS2‑encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999;96(5):645–53.

33. Karin M., Gallagher E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 2009;228(1):225–40.

34. Laine A., Ronai Z. Ubiquitin chains in the ladder of MAPK signaling. Sci STKE 2005;2005(281):re5.

35. Chen Z. J. Ubiquitin signalling in the NF- kappaB pathway. Nat Cell Biol 2005;7(8):758–65.

36. Fuchs S. Y., Spiegelman V. S., Kumar K. G. The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 2004;23(11):2028–36.

37. Zeng W., Sun L., Jiang X. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010;141(2):315–30.

38. Ragimbeau J., Dondi E., Alcover A. et al. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 2003;22(3):537–47.

39. Marijanovic Z., Ragimbeau J., Kumar K. G. et al. TYK2 activity promotes ligand-induced IFNAR1 proteolysis. Biochem J 2006;397(1):31–8.

40. Liu J., Plotnikov A., Banerjee A. et al. Ligand-independent pathway that controls stability of interferon alpha receptor. Biochem Biophys Res Commun 2008;367(2):388–93.

41. Carbone C. J., Zheng H., Bhattacharya S. et al. Protein tyrosine phosphatase 1B is a key regulator of IFNAR1 endocytosis and a target for antiviral therapies. Proc Natl Acad Sci USA 2012;109(47):19226–31.

42. Payelle-Brogard B., Pellegrini S. Biochemical monitoring of the early endocytic traffic of the type I interferon receptor. J Interferon Cytokine Res 2010;30(2):89–98.

43. Wu G., Xu G., Schulman B. A. et al. Structure of a beta-TrCP1‑Skp1‑beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003;11(6):1445–56.

44. Tang W., Pavlish O. A., Spiegelman V. S. et al. Interaction of Epstein-Barr virus latent membrane protein 1 with SCFHOS / beta-TrCP E3 ubiquitin ligase regulates extent of NF-kappaB activation. J Biol Chem 2003;278(49):48942–9.

45. Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF- [kappa] B activity. Annu Rev Immunol 2000;18:621–63.

46. Windheim M., Peggie M., Cohen P. Two different classes of E2 ubiquitinconjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J 2008;409(3):723–9.

47. Tenno T., Fujiwara K., Tochio H. et al. Structural basis for distinct roles of Lys63- and Lys48‑linked polyubiquitin chains. Genes Cells 2004;9(10):865–75.


Рецензия

Для цитирования:


J. Carbone Ch., Zheng H., Y. Fuchs S. Альтернативные убиквитин-конъюгирующие ферменты Е2 регулируют эндоцитоз рецептора интерферона-1. Успехи молекулярной онкологии. 2014;1(2):61-73. https://doi.org/10.17650/2313-805X.2014.1.2.61-73

For citation:


J. Carbone Ch., Zheng H., Y. Fuchs S. Endocytosis of the IFNAR1 chain of Type 1 interferon receptor is regulated by diverse E2 ubiquitin conjugation enzymes. Advances in Molecular Oncology. 2014;1(2):61-73. (In Russ.) https://doi.org/10.17650/2313-805X.2014.1.2.61-73

Просмотров: 538


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)