ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
Ubiquitination of signaling receptors triggers their endocytosis to restrict the extent of cell signaling. Type 1 interferon (IFN1) eliminates its receptor from cell surface via stimulating the ubiquitination of its IFNAR1 chain. While it was suggested that this ubiquitination aids IFNAR1
internalization via relieving a steric hindrance of a linear motif within IFNAR1 from the endocytic machinery, the mechanisms involved remain poorly understood. Here we describe a specific role for two disparate ubiquitin acceptor sites within this receptor. These sites, Lys501 and Lys525 / 526, exhibit a preference for polyubiquitination via either Lys63- or Lys48‑linked chains (K63‑Ub and K48‑Ub, respectively). Whereas the SCFβTrcp E3 ubiquitin ligase controls either type of ubiquitination-dependent IFNAR1 endocytosis, the specificity of these processes is determined by two different E2 ubiquitin conjugating enzymes, Ubc13 and Cdc34. These enzymes can be directly used by SCFβTrcp E3 ubiquitin ligase to generate either K63‑Ub or K48‑Ub in vitro. Ubc13 is involved in IFNAR1 endocytosis driven by the K63‑Ub modification of Lys501, whereas the K48‑Ub-specific Cdc34 affects receptor endocytosis via ubiquitin conjugation that occurs on Lys525 / 526. Both types of linkages combine to maximize IFNAR1 endocytosis otherwise suppressed by unfavorable conformation dependent on the presence of a conserved Pro470 within the intracellular domain of IFNAR1. We propose a model where alternate utilization of both E2s to assemble diverse polyubiquitin linkages cooperates to achieve IFNAR1 intracellular domain conformations and spatial arrangements that favor a maximal rate of receptor endocytosis.
Убиквитинирование сигнальных рецепторов, вызывающее их эндоцитоз, направлено на подавление передачи сигнала. Деградация рецептора интерферона 1‑го типа (IFN1) на поверхности клетки осуществляется путем убиквитинирования комплекса лиганда с рецептором (IFNAR1). Принято считать, что убиквитинирование способствует взаимодействию между линейным мотивом комплекса IFNAR1 и соответствующими структурами системы эндоцитоза, однако механизм этого процесса остается неясным. В данной работе изучена роль двух различных акцепторных сайтов убиквитина на этом рецепторе. Предпочтительное полиубиквитинирование сайтов Lys501 и Lys525 / 526 обеспечивается посредством Lys63- или Lys48‑связанных цепей (K63‑Ub и K48‑Ub соответственно). Несмотря на то, что убиквитинлигаза SCFβTrcp E3 контролирует оба типа убиквитин-зависимого эндоцитоза IFNAR1, специфика этих процессов определяется двумя различными убиквитин-конъюгирующими ферментами E2 – Ubc13 и Cdc34. Эти ферменты могут непосредственно использоваться убиквитинлигазой SCFβTrcp E3 для создания K63‑Ub или K48‑Ub in vitro. Ubc13 принимает участие в эндоцитозе IFNAR1 путем модификации Lys501 с помощью K63‑Ub, в то время как K48‑Ub-специфичный Cdc34 изменяет эндоцитоз посредством конъюгации с убиквитином, которая происходит на Lys525 / 526. Совместный эффект обоих воздействий максимально стимулирует эндоцитоз IFNAR1, который обычно ингибирован конформационным несоответствием, связанным с наличием консервативного Pro470 во внутриклеточном домене IFNAR1. Мы предлагаем модель, в которой эффекты обоих ферментов E2 объединяют отдельные составляющие системы полиубиквитинирования, обеспечивая им взаимодействие с внутриклеточным доменом IFNAR1 при оптимальном пространственном расположении, что дает наибольшую скорость эндоцитоза рецептора.
ОБЗОРЫ
В основе онкологических заболеваний и их прогрессии лежит каскадный процесс накопления генетических повреждений, затрагивающих не менее 20 генов, и поэтому важность молекулярно-генетических исследований для клинической онкологии не вызывает сомнений. Современные методы молекулярной биологии, позволяющие детерминировать структурные и функциональные изменения генов и их продуктов, которые могут служить специфическими маркерами опухолевого роста, открывают принципиально новые возможности в клинической онкологии. В обзоре рассматриваются пути совершенствования критериев для формирования диагностических тестов, оценки молекулярных факторов течения болезни и эффективности проводимых лечебных мероприятий. Для определения спектра маркеров особое внимание должно быть направлено на исследования путей передачи сигналов ключевых генов опухолевого роста и их ближайших партнеров. Одним из важных аспектов является корректное формирование групп пациентов и коллекций образцов. Подчеркивается необходимость объединения в рамках единых программ традиционных способов диагностики и лечения с современными методами молекулярно-генетического тестирования и биоинформатики.
На долю наследственных форм приходится 5–10 % случаев рака молочной железы, 30 % из них обусловлены мутациями в генах BRCA1 / 2 (синдром наследственного рака молочной железы / рака яичников). Средние кумулятивные риски для носителей мутаций в гене BRCA1 достигают 87 % в отношении развития рака молочной железы и 44 % в отношении развития рака яичников. Высок риск контралатерального рака молочной железы: при манифестации первичной опухоли у носителей мутаций в гене BRCA1 в возрасте до 40 лет он составляет 62,9 %. Активно изучается роль однонуклеотидных полиморфизмов, модифицирующих риск развития рака молочной железы и других опухолей женской репродуктивной системы у носителей мутаций в генах BRCA1 / 2. Молекулярная диагностика проводится в рамках медико-генетического консультирования. Основными показаниями для генетического тестирования являются онкологически отягощенный семейный анамнез, рак молочной железы у женщин в молодом возрасте (до 35–50 лет), рак яичников, рак молочной железы у мужчин, морфологические особенности рака молочной железы (трижды негативные, медуллярные опухоли), этническая принадлежность (ашкеназские евреи). В группах высокого генетического риска проводятся профилактические химиотерапевтические и хирургические мероприятия. Показана высокая эффективность профилактических операций в отношении развития рака молочной железы и рака яичников. Двусторонняя профилактическая мастэктомия снижает риск развития рака молочной железы на 90–94 %.
Меланома – наиболее опасное злокачественное заболевание кожи человека с высоким риском метастазирования. Метастазирующая меланома прогностически крайне неблагоприятна и резистентна ко всем видам традиционной химиотерапии и биологическим препаратам. В последнее время достигнуты значительные успехи в понимании патогенеза и лечении меланомы. В развитие меланомы вовлечены как внешние (ультрафиолетовое облучение), так и внутренние (наследственные генетические) факторы. В 5–14 % случаев меланома кожи является наследственным заболеванием, обусловленным изменениями в генах предрасположенности. Факторами риска развития семейной меланомы являются герминальные мутации в генах регуляции клеточного цикла CDKN2A и CDK4, гене гомеостаза меланоцитов MITF, а также однонуклеотидные полиморфизмы ряда низкопенетрантных генов, в частности гена MC1R. В патогенез меланомы вовлечены онкогены и гены-супрессоры, входящие в состав различных сигнальных каскадов. В 75 % случаев меланомы кожи наблюдается гиперактивация сигнального пути RAS / RAF / MEK / ERK. Важнейшим генетическим событием в меланоме является активация сигнального пути PI3K– AKT– mTOR, причем уровень активации повышается с увеличением стадийности меланомы. Меланома представляет собой генетически и фенотипически гетерогенную группу опухолей. Спектр хромосомных нарушений и активирующих мутаций, формирующих различные молекулярные портреты опухоли, отличается в меланоме различной локализации. В меланоме поверхности кожи доминируют мутации в генах BRAF (50 %), NRAS (20 %), причем мутации NRAS характерны для опухолей на участках кожи, подверженных инсоляции. Активирующие мутации KIT выявляют в 20–30 % случаев меланомы акральной или мукозальной локализации, а также в меланоме, возникшей в результате ультрафиолетового повреждения кожи. В 25 % случаев меланома кожи развивается из предсуществующего невуса, в обзоре обсуждаются молекулярные механизмы малигнизации невусов. Использование полноэкзомного секвенирования меланомы позволило обнаружить новые гены, нарушения в которых связаны с повреждающим действием ультрафиолета: PPP6C, RAC1, SNX31, TACC1 и STK19. Успехи в изучении меланомы привели к положительным результатам в ее лечении, особенно с помощью таргетной терапии. В обзоре рассмотрены молекулярные мишени и перспективы таргетной терапии метастатической меланомы кожи.
Рак почки по праву считается одной из основных проблем современной онкоурологии. В структуре онкологической заболеваемости в России доля злокачественных новообразований почки составляет 4,3 %. В последние годы отмечается тенденция к увеличению абсолютного числа данной категории больных. В общей структуре заболеваемости злокачественные новообразования почки составляют 3,6 %, что соответствует 10‑му ранговому месту. Для некоторых новообразований, например опухолей простаты и яичников, существуют диагностические маркеры, что позволило в последние годы выявлять данные заболевания на значительно более ранних стадиях, нежели раньше. Рак почки по‑прежнему остается достаточно сложным в диагностическом и терапевтическом плане заболеванием, которое симптоматически проявляет себя уже на поздних стадиях. В России на момент установления диагноза локализованный и местно-распространенный рак почки выявляется у 75,4 % заболевших. Несмотря на наличие на фармацевтическом рынке различных таргетных препаратов, направленных на лечение данного заболевания, терапия почечно-клеточного рака на данный момент не достигла значительных успехов. Большинство современных таргетных терапевтических агентов, направленных на лечение рака почки, включает в себя ингибиторы различных компонентов одного сигнального пути, берущего свое начало от опухолевого супрессора VHL1, потеря экспрессии которого наблюдается в большинстве случаев почечно-клеточных карцином. Очевидно, что существующие на фармацевтическом рынке препараты не обладают достаточной терапевтической эффективностью. Именно поэтому возникает необходимость поиска новых сигнальных путей, регулирующих важнейшие клеточные процессы, такие как пролиферация, миграция и апоптоз. Существующие на сегодняшний день маркеры прогноза и мишени терапии почечно-клеточного рака малочисленны и низкоспецифичны. В связи с этим поиск и валидация новых маркеров, а в особенности новых специфических мишеней для лечения онкопатологий почки представляются чрезвычайно актуальными.
Обзор посвящен роли гипоксии и гликолиза в развитии опухолевого процесса. Экспериментальные данные показывают, что функция гликолиза в опухолевых клетках не ограничивается только обеспечением энергии. При гликолизе происходит активация транскрипционного фактора HIF-1α. HIF-1α в комплексе с белком ARNT стимулирует экспрессию многочисленных генов. К ним относятся гены, кодирующие белки гликолиза, теломеразы, множественной лекарственной устойчивости, антиапоптотические белки семейства Bcl-2, ингибитор пируватдегидрогеназы – киназу пируватдегидрогеназы и др. Ингибирование дыхательной цепи митохондрий при ингибировании пируватдегидрогеназы вызывает накопление в клетке пирувата. Лактатдегидрогеназа превращает пируват в лактат. Накопление лактата в клетках опухоли стимулирует активность монокарбоксилат-транспортера. Происходит транспорт лактата и протонов в межклеточное пространство. Наблюдается падение уровня рН в ткани опухоли. Низкий уровень рН в опухолевой ткани стимулирует активность металлопротеаз, которые разрушают межклеточный матрикс. В участках опухоли с низким рН происходит усиление инвазии. Восстановление нормального уровня рН в ткани опухоли ингибирует инвазию и метастазирование. Таким образом, метаболиты гликолиза участвуют в инвазии и метастазировании. Можно заключить, что гипоксия – это особое физиологическое состояние клетки, поддерживающее и развивающее опухолевый процесс. Имеются данные о противоопухолевом действии ингибиторов различных стадий гликолиза. Ингибиторы гексокиназы – 2‑дезоксиглюкоза и лонидамин – ингибируют образование аденозинтрифосфата. Подавляется активность Р-гликопротеина. Для некоторых типов опухолей эти соединения обладают токсическим эффектом. Ингибирование Р-гликопротеина усиливает противоопухолевую активность цитостатиков, используемых в химиотерапии, при совместном их действии. Дихлорацетат ингибирует
активность киназы пируватдегидрогеназы. Включение функционирования дыхательной цепи в условиях недостатка кислорода вызывает образование активных форм кислорода, которые способны вызвать апоптоз. Показано, что для некоторых форм опухолей дихлорацетат является сильным токсическим агентом. Обсуждается возможность использования ингибиторов различных стадий гликолиза в качестве противоопухолевых соединений – как в монотерапии, так и в комплексе с известными цитостатиками.
НА ПРАВАХ РЕКЛАМЫ
Задачи. Разработать питательную среду Амниокар, содержащую эмбриональную телячью сыворотку (ЭТС) и коктейль факторов роста, для накопления биомассы фибробластов человека. Исследовать пролиферативную активность данной среды на культурах клеток мезенхимального происхождения HUVEC и мезенхимальных стромальных клетках, а также на культуре клеток амниотической жидкости человека.
Материалы и методы. Определение скорости накопления клеточной массы и морфологии клеток при культивировании клеток разного гистогенеза в среде Амниокар и питательной среде, содержащей 10 % ЭТС.
Результаты. Показано, что среда Амниокар превосходила стандартную среду DMEM с 10 % ЭТС в 2–5 раз при культивировании фибробластов кожи, HUVEC и мезенхимальных стволовых клеток. Среда Амниокар увеличивала количество клеток эндотелия, вступающих в митоз, и поддерживала культуру клеток HUVEC при длительном пассировании in vitro. Клональное культивирование клеток амниотической жидкости человека в среде Амниокар обеспечивало развитие колоний как фибробластоподобного, так и эпителиального типа.
Выводы. Пролиферативная среда Амниокар эффективна для накопления биомассы различных клеток мезенхимального происхождения и может использоваться в диагностических целях в медицинской генетике, онкологии и др
ISSN 2413-3787 (Online)