Рецептор эстрогенов ERα и киназа LYN: участие в механизмах канцерогенеза и использование в качестве мишеней в таргетной терапии при онкологических заболеваниях
https://doi.org/10.17650/2313-805X-2021-8-3-44-59
Аннотация
Важной проблемой при терапии любого типа опухоли является возникновение первичной или вторичной резистентности, которая зачастую связана с изменением функционирования целевых генов. В связи с этим встает вопрос о понимании функциональных внутриклеточных взаимодействий генов и белков в онкологических процессах и возникновении резистентности к лечению. Для поиска целевых белков таргетной терапии необходимо идентифицировать таких участников сигнальной жизни клетки, функциональное состояние которых различно в норме и при канцерогенезе. также важно, чтобы определение этих участников не было артефактом вследствие терапии опухолей или культивирования клеточных линий и существовала возможность оказывать на них прямое воздействие, дающее комплексный эффект. кроме того, необходимо изучить изменения, происходящие с этими участниками, к которым относятся киназы семейства SRC LYN и ген эстрогенового рецептора α, во время терапии в целях преодоления возникающей резистентности.
Цель обзора – изучение роли генов киназы семейства SRC LYN и эстрогенового рецептора α в онкологических процессах и возникновении резистентности к терапии.
Об авторах
В. В. ТихоноваРоссия
115478 Москва, Каширское шоссе, 24
Ю. П. Финашутина
Россия
115478 Москва, Каширское шоссе, 24
Л. А. Кесаева
Россия
115478 Москва, Каширское шоссе, 24
Список литературы
1. Bilal E., Alexe G., Yao M. et al. Identification of the YES1 kinase as a therapeutic target in basal-like breast cancers. Genes Cancer 2010;1(10):1063–73. DOI: 10.1177/1947601910395583.
2. Martins M.M., Zhou A.Y. Corella A. et al. Linking tumor mutations to drug responses via a quantitative chemical-genetic interaction map. Cancer Discov 2015;5(2):154–67. DOI: 10.1158/2159-8290.CD-14-0552.
3. Шестакова Е.А. Мутации в генах эстрогенового рецептора α (ESR1) и киназы семейства SRC (LYN), ассоциированные с резистентностью к гормонотерапии рака яичников. Успехи молекулярной онкологии 2021;8(1):10–6. DOI: 10.17650/2313-805X-2021-8-1-10-16.
4. Liu S., Hao X., Ouyang X. et al. Tyrosine kinase LYN is an oncotarget in human cervical cancer: a quantitative proteomic based study. Oncotarget 2016;7(46): 75468–81. DOI: 10.18632/oncotarget.12258.
5. Meade J., Fernandez C., Turner M. The tyrosine kinase Lyn is required for B cell development beyond the T1 stage in the spleen: rescue by over-expression of Bcl-2. Eur J Immunol 2002;32(4): 1029–34. DOI: 10.1002/1521-4141(200204)32:4<1029::AID-IMMU1029>3.0.CO;2-M.
6. Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 2012;10(1):21. DOI: 10.1186/1478-811X-10-21.
7. Кит О.И., Водолажский Д.И., Кутилин Д.С. и др. Транскриптомная активность эстроген-регуляторных генов при малигнизации тканей тела матки. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета 2016;115:294–304.
8. Summy J.M., Gallick G.E. Src family kinases in tumor progression and metastasis Cancer Metastasis Rev 2003;22(4):337–58. DOI: 10.1023/a:1023772912750.
9. Choi Y.L., Bocanegra M., Kwon M.J. et al. LYN is a mediator of epithelialmesenchymal transition and a target of dasatinib in breast cancer. Cancer Res 2010;70(6):2296–306. DOI: 10.1158/0008-5472.CAN-09-3141.
10. Dressman H.K., Berchuck A., Chan G. et al. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer J Clin Oncol 2007;25(5):517–25. DOI: 10.1200/JCO.2006.06.3743.
11. Roseweir A.K., Qayyum T., Lim Z. et al. Nuclear expression of Lyn, a Src family kinase member, is associated with poor prognosis in renal cancer patients. BMC Cancer 2016;16:229. DOI: 10.1186/s12885-016-2254-9.
12. Wu J., Meng F., Lu H. et al. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood 2008;111(7):3821–9. DOI: 10.1182/blood-2007-08-109330.
13. Su N., Peng L., Xia B. et al. Lyn is involved in CD24-induced ERK1/2 activation in colorectal cancer. Mol Cancer 2012;11:43. DOI: 10.1186/1476-4598-11-43.
14. Zardan A., Nip K.M., Thaper D. et al. Lyn tyrosine kinase regulates androgen receptor expression and activity in castrate-resistant prostate cancer. Oncogenesis 2014;3(8):e115. DOI: 10.1038/oncsis.2014.30.
15. Mello A.A., Leal M.F., Rey J.A. et al. Deregulated Expression of SRC, LYN and CKB kinases by DNA methylation and its potential role in gastric Cancer invasiveness and metastasis. PLoS One 2015;10(10):e0140492. DOI: 10.1371/journal.pone.0140492.
16. Yang S.Y.C., Lheureux S., Karakasis K. et al. Landscape of genomic alterations in high-grade serous ovarian cancer from exceptional longand short-term survivors. Genome Med 2018;10(1):81. DOI: 10.1186/s13073-018-0590-x.
17. Zhang K., Kong X., Feng G. et al. Investigation of hypoxia networks in ovarian cancer via bioinformatics analysis. J Ovarian Res 2018;11(1):16. DOI: 10.1186/s13048-018-0388-x.
18. Koussounadis A., Langdon S.P., Um I. et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer 2016; 16:205. DOI: 10.1186/s12885-016-2212-6.
19. Bromann P.A., Korkaya H., Courtneidge S.A. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 2004;23(48):7957–68. DOI: 10.1038/sj.onc.1208079.
20. Yeatman T.J. A renaissance for SRC. Nat Rev Cancer 2004;4(6):470–80. DOI: 10.1038/nrc1366.
21. Chen W., Li Y., Wang Z. Evolution of oncogenic signatures of mutation hotspots in tyrosine kinases supports the atavistic hypothesis of cancer. Sci Rep 2018;8(1):8256. DOI: 10.1038/s41598-018-26653-5.
22. Liang X., Wisniewski D., Strife A. et al. Phosphatidylinositol 3-kinase and Src family kinases are required for phosphorylation and membrane recruitment of Dok-1 in c-Kit signaling. J Biol Chem 2002;277(16):13732–8. DOI: 10.1074/jbc.M200277200.
23. Iida M., Brand T.M., Campbell D.A. et al. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor. Oncogene 2019;3893: 2435. DOI: 10.1038/s41388-018-0572-x.
24. Tatosyan A.G., Mizenina O.A. Kinases of the Src family: structure and functions. Biochemistry (Mosc) 2000;65(1):49–58.
25. Tornillo G., Knowlson C., Kendrick H. et al. Dual Mechanisms of LYN kinase dysregulation drive aggressive behavior in breast cancer cells. Cell Rep 2018;25(13):3674–92.e10. DOI: 10.1016/j.celrep.2018.11.103.
26. Liu L.Y., Chang L.Y., Kuo W.H. et al. Prognostic features of signal transducer and activator of transcription 3 in an ER(+) breast cancer model system Cancer Inform 2014;13:21–45. DOI: 10.4137/CIN.S12493.
27. Tabariès S., Annis M.G., Hsu B.E. et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. Oncotarget 2015;6(11):9476–87. DOI: 10.18632/oncotarget.3269.
28. Liu D. LYN, a key gene from bioinformatics analysis, contributes to development and progression of esophageal adenocarcinoma. Med Sci Monit Basic Res 2015;21:253–61. DOI: 10.12659/MSMBR.895463.
29. Shen H., Liang Z., Zheng S., Li X. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome. Int J Mol Med 2017;40(5): 1385–96. DOI: 10.3892/ijmm.2017.3146.
30. Li B., Zhang G., Li C. et al. Lyn mediates FIP1L1-PDGFRA signal pathway facilitating IL-5RA intracellular signal through FIP1L1-PDGFRA/JAK2/Lyn/ AKT network complex in CEL. Oncotarget 2016;8(39):64984–98. DOI: 10.18632/oncotarget.11401.
31. Campbell T.M., Castro M.A.A., de Oliveira K.G. et al. ERα binding by transcription factors NFIB and YBX1 enables FGFR2 signaling to modulate estrogen responsiveness in breast cancer. Cancer Res 2018;78(2):410–21. DOI: 10.1158/0008-5472.CAN-17-1153.
32. Hodgkinson K., Forrest L.A., Vuong N. et al. GREB1 is an estrogen receptorregulated tumour promoter that is frequently expressed in ovarian cancer. Oncogene 2018;37(44):5873–86. DOI: 10.1038/s41388-018-0377-y.
33. Benhadjeba S., Edjekouane L., Sauvé K. et al. Feedback control of the CXCR7/ CXCL11 chemokine axis by estrogen receptor α in ovarian cancer. Mol Oncol 2018;12(10):1689–705. DOI: 10.1002/1878-0261.12362.
34. Millis S.Z., Jardim D.L., Albacker L. et al. Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities. Cancer 2019;125(7):1185–99. DOI: 10.1002/cncr.31921.
35. Tatarov O., Mitchell T.J., Seywright M. et al. SRC family kinase activity is upregulated in hormone-refractory prostate cancer. Clin Cancer Res 2009;15(10):3540–9. DOI: 10.1158/1078-0432.CCR-08-185.
36. Guest S.K., Ribas R., Pancholi S. et al. Src is a potential therapeutic target in endocrine-resistant breast cancer exhibiting low estrogen receptor-mediated transactivation. PLoS One 2016;11(6):e0157397. DOI: 10.1371/journal.pone.0157397.
37. Caccia D., Miccichè F., Cassinelli G. et al. Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line. Mol Cancer 2010;9:278. DOI: 10.1186/1476-4598-9-278.
38. Konecny G.E., Glas R., Dering J. et al. Activity of the multikinase inhibitor dasatinib against ovarian cancer cells. Br J Cancer 2009;101(10):1699–708. DOI: 10.1038/sj.bjc.6605381.
39. Ortona E., Pierdominici M., Berstein L. Autoantibodies to estrogen receptors and their involvement in autoimmune diseases and cancer. J Steroid Biochem Mol Biol 2014;144(Pt. B):260–7. DOI: 10.1016/j.jsbmb.2014.07.004.
40. Berstein L.M. Role of endocrinegenotoxic switchings in cancer and other human diseases: basic triad. Adv Exp Med Biol 2008;630:35–51. DOI: 10.1007/978-0-387-78818-0_3.
41. Berstein L., Tsyrlina E., Poroshina T. et al. Switching (overtargeting) of estrogen effects and its potential role in hormonal carcinogenesis. Neoplasma 2002;49(1):21–5.
42. Davies C., Godwin J., Gray R. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level metaanalysis of randomised trials. Lancet 2011;378(9793):771–84. DOI: 10.1016/S0140-6736(11)60993-8.
43. Yamamoto-Ibusuki M., Arnedos M., André F. Targeted therapies for ER+/ HER2-metastatic breast cancer. BMC Med 2015;13:137. DOI: 10.1186/s12916-015-0369-5.
44. Safety and efficacy of exemestane plus dasatinib versus placebo for advanced ER+ breast cancer. Clinical Trial. Identifier: NCT00767520. Avaliable at: https://clinicaltrials.gov/ct2/show/NCT00767520.
45. Randomized phase II trial of letrozole with or without dasatinib as first and second-line treatment for hormone receptor-positive, HER2-negative postmenopausal breast cancer that is unresectable, locally recurrent or metastatic. Clinical Trial. Identifier: NCT00696072. Avaliable at: https://clinicaltrials.gov/ct2/show/results/NCT00696072.
46. Trial of fulvestrant, MK-0646, and dasatinib for metastatic hormone receptor-positive HER2-negative breast cancer. Clinical Trial. Identifier: NCT00903006. Avaliable at: https://clinicaltrials.gov/ct2/show/results/NCT00903006.
47. Randomized trial of fulvestrant with or without dasatinib in men and postmenopausal women who have hormone receptor-positive advanced breast cancer previously treated with an aromatase inhibitor. Clinical Trial. Identifier: NCT00754325. Avaliable at: https://clinicaltrials.gov/ct2/show/results/NCT00754325?term=dasatinib&cond=breast+cancer&draw=2&rank=10.
48. Fulvestrant with or without bortezomib in patients with inoperable locally advanced or metastatic estrogen receptor positive breast cancer. Clinical Trial. Identifier: NCT01142401. Avaliable at: https://clinicaltrials.gov/ct2/show/NCT01142401.
49. Teng Y.Q., Jin H., Liu Z.Y. et al. The LynSIRT1 signaling pathway is involved in imatinib resistance in chronic myeloid leukaemia. Am J Transl Res 2020;12(6):2711–25.
50. Berstein L.M., Wang J.P., Zheng H. et al. Long-term exposure to tamoxifen induces hypersensitivity to estradiol. Clin Cancer Res 2004;10(4):1530–4. DOI: 10.1158/1078-0432.ccr-0433-03.
51. Berstein L.M., Zheng H., Yue W. et al. New approaches to the understanding of tamoxifen action and resistance. Endocr Relat Cancer 2003;10(2):267–77. DOI: 10.1677/erc.0.0100267.
52. Jeng M.H., Yue W., Eischeid A. et al. Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells. Breast Cancer Res Treat 2000;62(3):167–75. DOI: 10.1023/a:1006406030612.
53. Santen R.J., Song R.X., Zhang Z., Kumar R. et al. Long-term estradiol deprivation in breast cancer cells up-regulates growth factor signaling and enhances estrogen sensitivity. Endocr Relat Cancer 2005;12(Suppl 1):S61–73. DOI: 10.1677/erc.1.01018.
54. Дронова Т.А., Бабышкина Н.Н., Завьялова М.В. и др. Взаимосвязь компонентов EGFR/PI3K/AKT-сигнального пути с эффективностью терапии тамоксифеном у больных эстрогензависимым раком молочной железы. Успехи молекулярной онкологии 2018;5(3):40–50. DOI: 10.17650/2313-805X-2018-5-3-40-50.
55. Dronova T.A., Babyshkina N.N., Zavyalova M.V. et al.Vascular endothelial growth factor receptor 2 (VEGFR2) contributes to tamoxifen resistance in estrogen-positive breast cancer patients. Mol Biol (Mosk) 2021;55(1):118–25. DOI: 10.31857/S0026898421010055.
56. Красильников М.А., Щербаков А.М. Сигнальные пути, регулируемые эстрогенами, и их роль в опухолевой прогрессии: новые факты и направления поиска. Успехи молекулярной онкологии 2014;1(1):18–26. DOI: 10.17650/2313-805X.2014.1.1.18-26.
57. Scherbakov A.M., Sorokin D.V., Tatarskiy V.V. et al. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling. IUBMB Life 2016;68(4): 281–92. DOI: 10.1002/iub.1481.
58. Семина С.Е., Багров Д.В., Красильников М.А. Межклеточные взаимодействия и развитие гормональной резистентности клеток рака молочной железы. Успехи молекулярной онкологии 2015;2(2):50–5. DOI: 10.17650/2313-805X.2015.2.2.50-55.
59. Сорокин Д.В., Андреева О.Е., Михаевич Е.И. и др. Эффект негативной регуляции эстрогенового сигналинга под действием экзосом: роль в развитии резистентности клеток рака молочной железы. Успехи молекулярной онкологии 2020;7(3):58–62. DOI: 10.17650/2313-805X2020-7-3-58-62.
60. Малек А.В., Берштейн Л.М. МикроРНК: половые гормоны, гормональный канцерогенез, гормоночувствительность опухолевой ткани. Успехи молекулярной онкологии 2015;2(1):004–012. DOI: 10.17650/2313-805X.2015.2.1.004-012.
61. Kalinina T., Kononchuk V., Alekseenok E. et al. Expression of estrogen receptorand progesterone receptor-regulating microRNAs in breast cancer. Genes (Basel) 2021;12(4):582. DOI: 10.3390/genes12040582.
62. Sukocheva O.A., Lukina E., Friedemann M. et al. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: current findings and future perspectives. Semin Cancer Biol 2020:S1044-579X(20)30263-7. DOI: 10.1016/j.semcancer.2020.12.004.
63. Jeselsohn R., Yelensky R., Buchwalter G. et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptorpositive breast cancer. Clin Cancer Res 2014;20(7):1757–67. DOI: 10.1158/1078-0432.CCR-13-2332.
64. Hartmaier R.J., Trabucco S.E., Priedigkeit N. et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann Oncol 2018;29(4):872–80. DOI: 10.1093/annonc/mdy025.
65. Gates L.A., Gu G., Chen Y. et al. Proteomic profiling identifies key coactivators utilized by mutant ERα proteins as potential new therapeutic targets. Oncogene 2018;37(33):4581–98. DOI: 10.1038/s41388-018-0284-2.
66. Chandarlapaty S., Chen D., He W. et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical. JAMA Oncol 2016;2(10):1310–5. DOI: 10.1001/jamaoncol.2016.1279.
67. Babyshkina N., Vtorushin S., Zavyalova M. et al. The distribution pattern of ERα expression, ESR1 genetic variation and expression of growth factor receptors: association with breast cancer prognosis in Russian patients treated with adjuvant tamoxifen. Clin Exp Med 2017;17(3):383–93. DOI: 10.1007/s10238-016-0428-z.
68. Babyshkina N., Vtorushin S., Dronova T. et al. Impact of estrogen receptor α on the tamoxifen response and prognosis in luminal-A-like and luminal-B-like breast cancer. Clin Exp Med 2019;19(4):547–56. DOI: 10.1007/s10238-019-00583-6.
69. Backes F.J., Walker C.J., Goodfellow P.J. et al. Estrogen receptor-alpha as a predictive biomarker in endometrioid endometrial cancer. Gynecol Oncol 2016;141(2):312–7. DOI: 10.1016/j.ygyno.2016.03.006.
70. Fiorillo M., Sanchez-Alvarez R., Sotgia F., Lisanti M.P. The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging (Albany NY) 2018;10(12):4000–23. DOI: 10.18632/aging.101690.
71. Jordan V.C. 50th anniversary of the first clinical trial with ICI 46,474 (tamoxifen): then what happened? Endocr Relat Cancer 2021;28(1):R11–30. DOI: 10.1530/ERC-20-0335.
72. Berry N.B., Fan M., Nephew K.P. Estrogen receptor-alpha hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 2008;22(7):1535–51. DOI: 10.1210/me.2007-0449.
73. Lee C.I., Goodwin A., Wilcken N. Fulvestrant for hormone-sensitive metastatic breast cancer. Cochrane Database f Syst Rev 2017;1(1):CD011093. DOI: 10.1002/14651858.CD011093. pub2.
74. Khisamov A.A., Manujlova O.O., Byakhov M.Y. Mechanisms of development and the ways to overcome endocrine resistance in breast cancer. Malignant Tumours 2015;4:52–61. DOI: 10.18027/2224-5057-2015-4-52-61.
75. Jeselsohn R., Bergholz J.S., Pun M. et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 2018;33(2):173–86.e5. DOI: 10.1016/j.ccell.2018.01.004.
76. Abderrahman B., Maximov P.Y., Curpan R.F. et al. Pharmacology and molecular mechanisms of clinically relevant estrogen estetrol and estrogen mimic BMI-135 for the treatment of endocrine-resistant breast cancer. Mol Pharmacol 2020;98(4):364–81. DOI: 10.1124/molpharm.120.000054.
77. Abderrahman B., Maximov P.Y., Curpan R.F. et al. Rapid induction of the unfolded protein response and apoptosis by estrogen mimic TTC-352 for the treatment of endocrine-resistant breast cancer. Mol Cancer Ther 2021;20(1):11–25. DOI: 10.1158/1535-7163.MCT-20-0563.
78. Hiscox S., Barrett-Lee P., Borley A.C., Nicholson R.I. Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss. Eur J Cancer 2010;46(12):2187–95. DOI: 10.1016/j.ejca.2010.04.012.
79. Larsen S.L., Laenkholm A.V., DuunHenriksen A.K. et al. SRC drives growth of antiestrogen resistant breast cancer cell lines and is a marker for reduced benefit of tamoxifen treatment. PLoS One 2015;10(2):e0118346. DOI: 10.1371/journal.pone.0118346.
80. Zhou J., Xu M., Le K., et al. SRC promotes tamoxifen resistance in breast cancer via up-regulating SIRT1. Onco Targets Ther 2020;13:4635–47. DOI: 10.2147/OTT.S245749.
Рецензия
Для цитирования:
Тихонова В.В., Финашутина Ю.П., Кесаева Л.А. Рецептор эстрогенов ERα и киназа LYN: участие в механизмах канцерогенеза и использование в качестве мишеней в таргетной терапии при онкологических заболеваниях. Успехи молекулярной онкологии. 2021;8(3):44-59. https://doi.org/10.17650/2313-805X-2021-8-3-44-59
For citation:
Tikhonova V.V., Finashutina Y.P., Kesaeva L.A. LYN kinase and estrogen receptor ERα: involvement in carcinogenesis and potential therapeutic target for tumors. Advances in Molecular Oncology. 2021;8(3):44-59. (In Russ.) https://doi.org/10.17650/2313-805X-2021-8-3-44-59