Preview

Advances in Molecular Oncology

Advanced search

Interaction of environmental factors and genetic polymorphism in the etiology of cancer

https://doi.org/10.17650/2313-805X.2016.3.2.8-17

Abstract

Еnvironmental and lifestyle factors play a dominant role in etiology of cancer. In addition, genetic factors significantly influence interindividual variation in cancer incidence. The epidemiological studies in which effects of genetic polymorphism on the risk of cancer have been elucidated are somewhat disappointing. An important problem of these studies is their size. Moreover some of them do not have information on life-style and environmental exposures. The epidemiological method used to investigate the effect of genetic polymorphism on cancer risk is a retrospective case-control study. The chance of discovery of the specific «frequent» allelic variant which is associated with small increase in the risk is higher in studies including large numbers of cases and controls. This paper reviews the epidemiologic studies conducted in Department of epidemiology (Institute of carcinogenesis, Russian N. N. Blokhin Cancer Research Centre) in cooperation with countries of Central and Eastern Europe (Hungary, Poland, Romania, Slovakia) and coordinated by the International Agency for Research on Cancer (IARC). We will cover the studies, in which an attempt has been made to investigate the interaction between polymorphisms of phase 2 xenobiotic metabolism genes (GST), alcohol and aldehyde-metabolizing genes (ADH, ALDH), folate metabolism genes (MTHFR, TYMS) and CHECK2 with environmental and life-style factors in etiology of cancers of the lung, kidney and upper aerodigestive tract. The analyses of these studies suggest that genetic polymorphism modifies the effect of environmental exposures (including occupational carcinogens) and life-style factors (including tobacco, alcohol and diet) on the risk of cancer. The risk of cancer associated with known carcinogenic exposure may increase or decrease depending on the genotype. Interaction between exposure to carcinogenic factor and genotype is a major and significant determinant of cancer risk. Spontaneous tumors develop as a result of a combined effect of environmental factors and genetic polymorphism or endogenous and exogenous factors.

About the Authors

D. G. Zaridze
Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia; 24 Kashirskoe Shosse, Moscow, 115478, Russia
Russian Federation


A. F. Mukeriya
Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia; 24 Kashirskoe Shosse, Moscow, 115478, Russia
Russian Federation


O. V. Shan’gina
Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia; 24 Kashirskoe Shosse, Moscow, 115478, Russia
Russian Federation


References

1. Заридзе Д. Г. Профилактика рака. М.: ИМА-Пресс, 2009. [Zaridzе D. G. Cancer prophylactics. Мoscow: IМА-Press, 2009. (In Russ.)].

2. Lindor N. M., Lindor C. G., Green M. H. Hereditary neoplastic syndrome. In: Cancer Epidemiology and Prevention. Eds. by: D. Schottenfeld, J. Fraumeni. Oxford University Press, 2006. Pp. 562–76.

3. Caporaso N. E. Genetic modifiers of cancer risk. In: Cancer Epidemiology and Prevention. Eds. by: D. Schottenfeld, J. Fraumeni. Oxford University Press, 2006. Pp. 577–602.

4. Заридзе Д. Г. Молекулярная эпидемиология рака. Биохимия 2009;73(5):663–76. [Zaridzе D. G. Моlecular epidemiology of cancer. Biokhimiya = Biochemistry 2009;73(5):663–76. (In Russ.)].

5. Taioli E. Gene-environment interaction in tobacco-related cancers. Carcinogenesis 2008;29(8):1467–74.

6. Schwartz A. G., Prysak G. M., Bock C. H., Cote M. L. The molecular epidemiology of lung cancer. Carcinogenesis 2007;28(3):507–18.

7. García-Closas M., Malats N., Silverman D. et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005;366(9486):649–59.

8. Wikman H., Thiel S., Jager B. et al. Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility. Pharmacogenetics 2001;11:157–68.

9. McKay J. D., Hashibe M., Hung R. J. et al. Sequence variants of NAT1 and NAT2 and other xenometabolic genes and risk of lung and aerodigestive tract cancers in Central Europe. Cancer Epidemiol Biomarkers Prev 2008;17(1):141–7.

10. Brennan P., Hsu C. C., Moullan N. et al. Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a mendelian randomisation approach. Lancet 2005;366(9496):1558–60.

11. Raimondi S., Paracchini V., Autrup H. et al. Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol 2006;164(11):1027–42.

12. Buzio L., Tondel M., de Palma G. et al. Occupational risk factors for renal cell cancer. An Italian case-control study. Med Lav 2002;93(4):303–9.

13. Harth V., Brüning T., Bolt H. M. Renal carcinogenicity of trichloroethylene: update, mode of action, and fundamentals for occupational standard setting. Rev Environ Health 2005;20(2):103–18.

14. Karami S., Boffetta P., Rothman N. et al. Renal cell carcinoma, occupational pesticide exposure and modification by glutathione S-transferase polymorphisms. Carcinogenesis 2008;29(8):1567–71.

15. Moore L. E., Boffetta P., Karami S. et al. Occupational trichloroethylene exposure and renal carcinoma risk: evidence of genetic susceptibility by reductive metabolism gene variants. Cancer Res 2010;70(16):6527–36.

16. World Cancer Research Fund/American Institute Cancer Research. Food, Nutrition, Physical Activity and Prevention of Cancer: Global Perspective. Washington, DC: AICR, 2007.

17. Hecht S. S., Trushin N., Rigotty J. et al. Inhibitory effects of 6-phenylhexyl isothiocyanate on 4-(methylnitrosamino) – 1-(3-pyridyl) – 1-butanone metabolic activation and lung tumorigenesis in rats. Carcinogenesis 1996;17(9):2061–7.

18. London S. J., Yuan J. M., Chung F. L. et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet 2000;356(9231):724–9.

19. Fowke J. H., Shu X. O., Dai Q. et al. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China. Cancer Epidemiol Biomarkers Prev 2003;12(12):1536–9.

20. Brennan P., Hsu C. C., Moullan N. et al. Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a mendelian randomisation approach. Lancet 2005;4:366(9496):1558–60.

21. Moore L. E., Brennan P., Karami S. et al. Glutathione S-transferase polymorphisms, cruciferous vegetable intake and cancer risk in the Central and Eastern European Kidney Cancer Study. Carcinogenesis 2007;28(9):1960–4.

22. Zaridze D., Brennan P., Borenham J. еt al. Alcohol and cause-specific mortality in Russia: a retrospective case-control study of 48,557 adults. Lancet 2009;373(9682):2201–14.

23. Zaridze D., Lewington S., Boroda A. et al. Alcohol mortality in Russia: a prospective observational study of 151 000 adults. Lancet 2014;383(9927):1465–73.

24. Personal habits sand indoor combustions. A review of human carcinogens. In: IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. Vol. 100E. Lyon: IARC, 2012.

25. Hashibe M., Boffetta P., Zaridze D. et al. Evidence for an important role of alcoholand aldehyde-metabolizing genes in cancers of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev 2006;15(4):696–703.

26. Hashibe M., McKay J. D., Curado M. P. et al. Multiple ADH genes are associated with upper aerodigestive cancers. Nat Genet 2008;40(6):707–9.

27. Hung R. J., Hashibe M., McKay J. et al. Folate-related genes and the risk of obaccorelated cancers in Central Europe. Carcinogenesis 2007;28(6):1334–40.

28. Moore L. E., Hung R., Karami S. et al. Folate metabolism genes, vegetable intake and renal cancer risk in central Europe. Int J Cancer 2008;122(8):1710–5.

29. Varley J. TP53, CHEK2, and the Li–Fraumeni syndrome. Methods Mol Biol 2003;222:117–29.

30. Cybulski C., Masojc B., Oszutowska D. et al. Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. Carcinogenesis 2008;29(4):762–5.

31. Brennan P., McKay J., Moore L. et al. Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case control study. Hum Mol Genet 2007;6(15):1794–801.


Review

For citations:


Zaridze D.G., Mukeriya A.F., Shan’gina O.V. Interaction of environmental factors and genetic polymorphism in the etiology of cancer. Advances in Molecular Oncology. 2016;3(2):8-17. (In Russ.) https://doi.org/10.17650/2313-805X.2016.3.2.8-17

Views: 1304


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)