Preview

Успехи молекулярной онкологии

Расширенный поиск

Применение T-клеток с химерным антигенным рецептором (CAR-T) в комбинации с химио- и лучевой терапией для лечения солидных опухолей

https://doi.org/10.17650/2313-805X-2024-11-1-31-45

Аннотация

Терапия онкогематологических заболеваний на основе Т-клеток с химерным антигенным рецептором (chimeric antigen receptor, CAR) открыла новую эру в борьбе с раком крови. Результаты применения клеточной терапии оказались настолько перспективными, что на рынке уже появились 7 коммерческих препаратов для ее проведения. Однако CAR-T-терапия при солидных опухолях оказалась не очень эффективной. К тому же возник ряд проблем, таких как антигенная гетерогенность данных опухолей, иммуносупрессивное микроокружение, слабая инфильтрация опухоли иммунными клетками, истощение и снижение пролиферативной активности и цитотоксичности CAR-T-клеток внутри опухоли, ускользание целевого антигена опухоли, токсичность терапии. Для их решения предпринимаются усилия, направленные на совершенствование и улучшение методики лечения солидных опухолей. Химиотерапия является стандартом лечения большого количества злокачественных новообразований. ее также применяют перед началом клеточной терапии для лимфодеплеции и лучшего приживления вводимых CAR-T-клеток. Показано, что химиотерапия может снижать иммуносупрессивное воздействие опухолевого микроокружения, разрушать строму и способствовать лучшей инфильтрации опухоли СAR-T-клетками, улучшая их выживаемость, персистенцию и цитотоксичность, а также влияя на метаболизм иммунных клеток внутри опухоли. Однако эффективность комбинированного применения ХТ и CAR-T-клеточной терапии зависит от многих факторов: типа опухоли, дозы и схемы лечения, популяции CAR-T-клеток и индивидуальных особенностей организма. Аналогично обстоят дела и с лучевой терапией, которая может как повышать чувствительность опухоли к лечению, так и способствовать выживаемости опухолевых клеток.

В этом обзоре рассматривается применение CAR-T-терапии при солидных опухолях, затрагиваются основные проблемы лечения данных новообразований, пути их решения, а также вопросы возможности использования комбинированного подхода для улучшения эффективности клеточной терапии.

Об авторах

М. Р. Халиулин
ФГАОУ ВО «Казанский (Приволжский) федеральный университет»
Россия

420008 Казань, ул. Кремлевская, 18



Р. Н. Сафин
ГАУЗ «Республиканский клинический онкологический диспансер Минздрава Республики Татарстан им. Проф. М.З. Сигала»
Россия

420029 Казань, ул. Сибирский тракт, 29



М. А. Кунст
ГАУЗ «Республиканская клиническая больница» Минздрава Республики Татарстан
Россия

420064 Казань, ул. Оренбургский тракт, 138



Э. Р. Булатов
ФГАОУ ВО «Казанский (Приволжский) федеральный университет»; ГНЦ ФГБУН «Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова Российской академии наук»
Россия

Эмиль Рафаэлевич Булатов

420008 Казань, ул. Кремлевская, 18; 117997 Москва, ГСП-7, ул. Миклухо-Маклая, 16/10



Список литературы

1. GlobalSurg C, National Institute for Health Research Global Health Research Unit on Global S. Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries. Lancet 2021;397(10272): 387–97. DOI: 10.1016/S0140-6736(21)00001-5

2. Albano D., Benenati M., Bruno A. et al. Imaging side effects and complications of chemotherapy and radiation therapy: a pictorial review from head to toe. Insights Imaging 2021;12(1):76. DOI: 10.1186/s13244-021-01017-2

3. June C.H., Sadelain M. Chimeric antigen receptor therapy. N Engl J Med 2018;379(1):64–73. DOI: 10.1056/NEJMra1706169

4. Zhang L., Shen X., Yu W. et al. Comprehensive meta-analysis of anti-BCMA chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Ann Med 2021;53(1):1547–59. DOI: 10.1080/07853890.2021.1970218

5. Fischer J.W., Bhattarai N. CAR-T cell therapy: mechanism, management, and mitigation of inflammatory toxicities. Front Immunol 2021;12:693016. DOI: 10.3389/fimmu.2021.693016

6. Liu R., Cheng Q., Kang L. et al. CD19 or CD20 CAR T cell therapy demonstrates durable antitumor efficacy in patients with central nervous system lymphoma. Hum Gene Ther 2022;33(5–6): 318–29. DOI: 10.1089/hum.2021.249

7. Locke F.L., Ghobadi A., Jacobson C.A. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019;20(1):31–42. DOI: 10.1016/S1470-2045(18)30864-7

8. Zhao Z., Xiao X., Saw P.E. et al. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Sci China Life Sci 2020;63(2):180–205. DOI: 10.1007/s11427-019-9665-8

9. Liu E., Marin D., Banerjee P. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020;382(6):545–53. DOI: 10.1056/NEJMoa1910607

10. Basar R., Daher M., Rezvani K. Next-generation cell therapies: the emerging role of CAR-NK cells. Hematology Am Soc Hematol Educ Program 2020;2020(1):570–8. DOI: 10.1182/hematology.2020002547

11. Cassetta L., Kitamura T. Macrophage targeting: opening new possibilities for cancer immunotherapy. Immunology 2018;155(3):285–93. DOI: 10.1111/imm.12976

12. Elahi R., Khosh E., Tahmasebi S., Esmaeilzadeh A. Immune cell hacking: challenges and clinical approaches to create smarter generations of chimeric antigen receptor T cells. Front Immunol 2018;9:1717. DOI: 10.3389/fimmu.2018.01717

13. Kang C.H., Kim Y., Lee H.K. et al. Identification of potent CD19 scFv for CAR T cells through scFv screening with NK/T-cell line. Int J Mol Sci 2020;21(23). DOI: 10.3390/ijms21239163

14. Klampatsa A., Dimou V., Albelda S.M. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin Biol Ther 2021;21(4):473–86. DOI: 10.1080/14712598.2021.1843628

15. Land C.A., Musich P.R., Haydar D. et al. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med 2020;18(1):428. DOI: 10.1186/s12967-020-02598-0

16. Ajina A., Maher J. Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 2018;17(9):1795–815. DOI: 10.1158/1535-7163.MCT-17-1097

17. Imai C., Mihara K., Andreansky M. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004;18(4):676–84. DOI: 10.1038/sj.leu.2403302

18. Carpenito C., Milone M.C., Hassan R. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009;106(9):3360–5. DOI: 10.1073/pnas.0813101106

19. Poorebrahim M., Melief J., Pico de Coana Y. et al. Counteracting CAR T cell dysfunction. Oncogene 2021;40(2):421–35. DOI: 10.1038/s41388-020-01501-x

20. Tokarew N., Ogonek J., Endres S. et al. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer 2019;120(1):26–37. DOI: 10.1038/s41416-018-0325-1

21. Tahmasebi S., Elahi R., Esmaeilzadeh A. Solid tumors challenges and new insights of CAR T cell engineering. Stem Cell Rev Rep 2019;15(5):619–36. DOI: 10.1007/s12015-019-09901-7

22. Batra S.A., Rathi P., Guo L. et al. Glypican-3-specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma. Cancer Immunol Res 2020;8(3):309–20. DOI: 10.1158/2326-6066.CIR-19-0293

23. Hu Z., Zheng X., Jiao D. et al. LunX-CAR T cells as a targeted therapy for non-small cell lung cancer. Mol Ther Oncolytics 2020;17:361–70. DOI: 10.1016/j.omto.2020.04.008

24. Jiang H., Shi Z., Wang P. et al. Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst 2019;111(4):409–18. DOI: 10.1093/jnci/djy134

25. Yu L., Huang L., Lin D. et al. GD2-specific chimeric antigen receptor- modified T cells for the treatment of refractory and/or recurrent neuroblastoma in pediatric patients. J Cancer Res Clin Oncol 2022;148(10):2643–52. DOI: 10.1007/s00432-021-03839-5

26. Lamers C.H., Sleijfer S., van Steenbergen S. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 2013;21(4):904–12. DOI: 10.1038/mt.2013.17

27. Andersch L., Radke J., Klaus A. et al. CD171- and GD2-specific CART cells potently target retinoblastoma cells in preclinical in vitro testing. BMC Cancer 2019;19(1):895. DOI: 10.1186/s12885-019-6131-1

28. Liu Y., Guo Y., Wu Z. et al. Anti-EGFR chimeric antigen receptormodified T cells in metastatic pancreatic carcinoma: a phase I clinical trial. Cytotherapy 2020;22(10):573–80. DOI: 10.1016/j.jcyt.2020.04.088

29. Xu J., Meng Q., Sun H. et al. HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer. Cell Death Dis 2021;12(12):1109. DOI: 10.1038/s41419-021-04100-0

30. Henke E., Nandigama R., Ergun S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 2019;6:160. DOI: 10.3389/fmolb.2019.00160

31. Bussard K.M., Mutkus L., Stumpf K. et al. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 2016;18(1):84. DOI: 10.1186/s13058-016-0740-2

32. Pfirschke C., Siwicki M., Liao H.W., Pittet M.J. Tumor microenvironment: no effector T cells without dendritic cells. Cancer Cell 2017;31(5):614–5. DOI: 10.1016/j.ccell.2017.04.007

33. Luo W., Li C., Zhang Y., et al. Adverse effects in hematologic malignancies treated with chimeric antigen receptor (CAR) T cell therapy: a systematic review and meta-analysis. BMC Cancer 2022;22(1):98. DOI: 10.1186/s12885-021-09102-x

34. Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19(11):1423–37. DOI: 10.1038/nm.3394

35. Patsoukis N., Bardhan K., Chatterjee P. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 2015;6:6692. DOI: 10.1038/ncomms7692

36. Whilding L.M., Halim L., Draper B. et al. CAR T-cells targeting the integrin alphavbeta6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers (Basel) 2019;11(5). DOI: 10.3390/cancers11050674

37. Caruana I., Savoldo B., Hoyos V. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 2015;21(5):524–9. DOI: 10.1038/nm.3833

38. Haas R., Smith J., Rocher-Ros V. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 2015;13(7):e1002202. DOI: 10.1371/journal.pbio.1002202

39. Gu K., Liu G., Wu C. et al. Tryptophan improves porcine intestinal epithelial cell restitution through the CaSR/Rac1/PLC-gamma1 signaling pathway. Food Funct 2021;12(18):8787–99. DOI: 10.1039/d1fo01075a

40. Titov A., Kaminskiy Y., Ganeeva I. et al. Knowns and unknowns about CAR-T cell dysfunction. Cancers (Basel) 2022;14(4):1078. DOI: 10.3390/cancers14041078

41. Titov A., Valiullina A., Zmievskaya E. et al. Advancing CAR T-cell therapy for solid tumors: lessons learned from lymphoma treatment. Cancers (Basel) 2020;12(1):125. DOI: 10.3390/cancers12010125

42. Zhang M., Jin X., Sun R. et al. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J Transl Med 2021;19(1):499. DOI: 10.1186/s12967-021-03165-x

43. Wang R., Dillon C.P., Shi L.Z. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011;35(6):871–82. DOI: 10.1016/j.immuni.2011.09.021

44. MacIver N.J., Michalek R.D., Rathmell J.C. Metabolic regulation of T lymphocytes. Annu Rev Immunol 2013;31:259–83. DOI: 10.1146/annurev-immunol-032712-095956

45. Schubert M.L., Schmitt M., Wang L. et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 2021;32(1):34–48. DOI: 10.1016/j.annonc.2020.10.478

46. Huang M., Deng J., Gao L., Zhou J. Innovative strategies to advance CAR T cell therapy for solid tumors. Am J Cancer Res 2020;10(7):1979–92.

47. Reits E.A., Hodge J.W., Herberts C.A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006;203(5):1259–71. DOI: 10.1084/jem.20052494

48. Laplagne C., Domagala M., Le Naour A. et al. Latest advances in targeting the tumor microenvironment for tumor suppression. Int J Mol Sci 2019;20(19):4719. DOI: 10.3390/ijms20194719

49. DeVita V.T. Jr., Chu E. A history of cancer chemotherapy. Cancer Res 2008;68(21):8643–53. DOI: 10.1158/0008-5472.CAN-07-6611

50. Mattheolabakis G., Rigas B., Constantinides P.P. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond) 2012;7(10):1577–90. DOI: 10.2217/nnm.12.128

51. Preuer K., Lewis R.P.I., Hochreiter S. et al. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics 2018;34(9):1538–46. DOI: 10.1093/bioinformatics/btx806

52. Noordam L., Kaijen M.E.H., Bezemer K. et al. Low-dose cyclophosphamide depletes circulating naive and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy. Oncoimmuno- logy 2018;7(12):e1474318. DOI: 10.1080/2162402X.2018.1474318

53. Lesterhuis W.J., Punt C.J., Hato S.V. et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest 2011;121(8):3100–8. DOI: 10.1172/JCI43656

54. Li J.Y., Duan X.F., Wang L.P. et al. Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. J Immunol Res 2014;2014:286170. DOI: 10.1155/2014/286170

55. Zhang L., Dermawan K., Jin M. et al. Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 2008;129(2):219–29. DOI: 10.1016/j.clim.2008.07.013

56. Alzubi J., Dettmer-Monaco V., Kuehle J. et al. PSMA-directed CAR T cells combined with low-dose docetaxel treatment induce tumor regression in a prostate cancer xenograft model. Mol Ther Oncolytics 2020;18:226–35. DOI: 10.1016/j.omto.2020.06.014

57. Baskar R., Lee K.A., Yeo R., Yeoh K.W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012;9(3):193–9. DOI: 10.7150/ijms.3635

58. Shevtsov M., Sato H., Multhoff G., Shibata A. Novel approaches to improve the efficacy of immuno-radiotherapy. Front Oncol 2019;9:156. DOI: 10.3389/fonc.2019.00156

59. Lee Y., Auh S.L., Wang Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 2009;114(3):589–95. DOI: 10.1182/blood-2009-02-206870

60. Fadok V.A., Bratton D.L., Konowal A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998;101(4):890–8. DOI: 10.1172/JCI1112

61. Nam J.S., Terabe M., Mamura M. et al. An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 2008;68(10):3835–43. DOI: 10.1158/0008-5472.CAN-08-0215

62. Deng L., Liang H., Burnette B. et al. Radiation and anti-PD-L1 antibody combinatorial therapy induces T cell-mediated depletion of myeloid-derived suppressor cells and tumor regression. Oncoimmunology 2014;3:e28499. DOI: 10.4161/onci.28499

63. Parente-Pereira A.C., Whilding L.M., Brewig N. et al. Synergistic chemoimmunotherapy of epithelial ovarian cancer using ErbBretargeted T cells combined with carboplatin. J Immunol 2013;191(5):2437–45. DOI: 10.4049/jimmunol.1301119

64. Heylmann D., Bauer M., Becker H. et al. Human CD4+CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLoS One 2013;8(12):e83384. DOI: 10.1371/journal.pone.0083384

65. Muranski P., Boni A., Wrzesinski C. et al. Increased intensity lymphodepletion and adoptive immunotherapy – how far can we go? Nat Clin Pract Oncol 2006;3(12):668–81. DOI: 10.1038/ncponc0666

66. Murad J.P., Tilakawardane D., Park A.K. et al. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol Ther 2021;29(7):2335–49. DOI: 10.1016/j.ymthe.2021.02.024

67. Heczey A., Louis C.U., Savoldo B. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther 2017;25(9):2214–24. DOI: 10.1016/j.ymthe.2017.05.012

68. Turtle C.J., Hanafi L.A., Berger C. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016;126(6):2123–38. DOI: 10.1172/JCI85309

69. Zhang X., Wang D., Li Z. et al. Low-dose gemcitabine treatment enhances immunogenicity and natural killer cell-driven tumor immunity in lung cancer. Front Immunol 2020;11:331. DOI: 10.3389/fimmu.2020.00331

70. Whilding L.M., Maher J. ErbB-targeted CAR T-cell immunotherapy of cancer. Immunotherapy 2015;7(3):229–41. DOI: 10.2217/imt.14.120

71. Song Y., Liu Q., Zuo T. et al. Combined antitumor effects of antiEGFR variant III CAR-T cell therapy and PD-1 checkpoint blockade on glioblastoma in mouse model. Cell Immunol 2020;352:104112. DOI: 10.1016/j.cellimm.2020.104112

72. Papa S., Adami A., Metoudi M. et al. Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study. J Immunother Cancer 2023;11(6):007162. DOI: 10.1136/jitc-2023-007162

73. Korenev G., Yakukhnov S., Druk A. et al. USP7 Inhibitors in cancer immunotherapy: current status and perspective. Cancers (Basel) 2022;14(22):5539. DOI: 10.3390/cancers14225539

74. Curran K.J., Margossian S.P., Kernan N.A. et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood 2019;134(26):2361–8. DOI: 10.1182/blood.2019001641

75. Michaud M., Martins I., Sukkurwala A.Q. et al. Autophagydependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011;334(6062):1573–7. DOI: 10.1126/science.1208347

76. Ghilardi G., Chong E.A., Svoboda J. et al. Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas. Ann Oncol 2022;33(9):916–28. DOI: 10.1016/j.annonc.2022.05.521

77. Ramos C.A., Grover N.S., Beaven A.W. et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J Clin Oncol 2020;38(32):3794–804. DOI: 10.1200/JCO.20.01342

78. Lamers C.H., Willemsen R., van Elzakker P. et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 2011;117(1):72–82. DOI: 10.1182/blood-2010-07-294520

79. Wang W., Kryczek I., Dostal L. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 2016;165(5):1092–105. DOI: 10.1016/j.cell.2016.04.009

80. Dangaj D., Bruand M., Grimm A.J. et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 2019;35(6): 885–900e10. DOI: 10.1016/j.ccell.2019.05.004

81. Paulsson J., Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol 2014;25:61–8. DOI: 10.1016/j.semcancer.2014.02.006


Рецензия

Для цитирования:


Халиулин М.Р., Сафин Р.Н., Кунст М.А., Булатов Э.Р. Применение T-клеток с химерным антигенным рецептором (CAR-T) в комбинации с химио- и лучевой терапией для лечения солидных опухолей. Успехи молекулярной онкологии. 2024;11(1):31-45. https://doi.org/10.17650/2313-805X-2024-11-1-31-45

For citation:


Khaliulin M.R., Safin R.N., Kunst M.A., Bulatov E.R. The use of T-cells with chimeric antigen receptor (CAR-T) in combination with chemotherapy and radiotherapy for the treatment of solid tumors. Advances in Molecular Oncology. 2024;11(1):31-45. (In Russ.) https://doi.org/10.17650/2313-805X-2024-11-1-31-45

Просмотров: 707


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)