Preview

Advances in Molecular Oncology

Advanced search

Two-faced Janus: on the 150th anniversary of the discovery of DDT

https://doi.org/10.17650/2313-805X-2024-11-3-41-55

Abstract

One of the factors associated with increased morbidity of malignant neoplasms is environmental pollution with cancerogenic compounds including pesticides. Until recently, stable organic pollutant insecticide dichlorodiphenyltrichloroethane (DDT) was the single tool for fighting malaria carriers. Despite vast evidence of its negative effect on human health, DDT is still used in some countries.
Aim. To perform a comprehensive analysis of the dynamics of DDT pesticide use and the consequences of its use on the global healthcare as well as to investigate the mechanism of its action on the human body including the endocrine system and cancerogenic effects.
The review was composed using the PubMed (2853 publications), Elsevier (3139 publications), eLibrary (784 publications) biomedical literature databases. Full-text articles were retrieved through PubMed Central (PMC), Science Direct, Research Gate, CyberLeninka electronic resources.

About the Authors

O. V. Morozova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



A. Yu. Bukina
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; MIREA – Russian Technological University
Russian Federation

24 Kashirskoe Shosse, Moscow 115522

78 Vernadskogo Prospekt, Moscow 119454



V. G. Popova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



G. I. Khairieva
Sechenov University, Ministry of Health of Russia
Russian Federation

Bld. 2, 8 Trubetskaya St., Moscow 119991



G. R. Sagitova
Sechenov University, Ministry of Health of Russia
Russian Federation

Bld. 2, 8 Trubetskaya St., Moscow 119991



G. A. Belitsky
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



M. G. Yakubovskaya
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



K. I. Kirsanov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522

6 Miklukho-Maklaya St., Moscow 117198



V. P. Maksimova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Varvara Pavlovna Maksimovaм

24 Kashirskoe Shosse, Moscow 115522



References

1. Parsa N. Environmental factors inducing human cancers. Iran J Public Health 2012;41(11):1–9.

2. Schug T.T., Johnson A.F., Birnbaum L.S. et al. Minireview: endocrine disruptors: past lessons and future directions. Mol Endocrinol 2016;30(8):833–47. DOI: 10.1210/me.2016-1096

3. Guyton K.Z., Loomis D., Grosse Y. et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 2015;16(5):490–1. DOI: 10.1016/S1470-2045(15)70134-8

4. Lewandowska A.M., Rudzki M., Rudzki S. et al. Environmental risk factors for cancer – review paper. Ann Agric Environ Med 2019;26(1):1–7. DOI: 10.26444/aaem/94299

5. Endocrine disruptors – the lessons (not) learned. Lancet Oncol 2021;22(11):1483. DOI: 10.1016/S1470-2045(21)00597-0

6. Bergman A., Heindel J.J., Kasten T. et al. The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect 2013;121(4):A104–6. DOI: 10.1289/ehp.1205448

7. Guidance on chemicals and health. Compendium of WHO and other UN guidance on health and environment. World Health Organization. 2021. Available at: https://www.who.int/tools/compendium-on-health-and-environment/chemicals.

8. Turusov V., Rakitsky V., Tomatis L. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 2002;110(2):125–8. DOI: 10.1289/ehp.02110125

9. DDT, lindane, and 2,4-D. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon (FR): International Agency for Research on Cancer, 2018.

10. Vijverberg H.P., van der Zalm J.M., van der Bercken J. Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature 1982;295(5850):601–3. DOI: 10.1038/295601a0

11. Läuger P., Martin H., Müller P. Über Konstitution und toxische. Wirkung von natürlichen und neuen synthetischen insektentötenden Stoffen 1944;27(1):892–928. DOI: 10.1002/hlca.194402701115

12. Occupational exposures in insecticide application, and some pesticides. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: IARC, 1991.

13. Mansouri A., Cregut M., Abbes C. et al. The Environmental issues of DDT pollution and bioremediation: a multidisciplinary review. Appl Biochem Biotechnol 2017;181(1):309–39. DOI: 10.1007/s12010-016-2214-5

14. Resolving the DDT dilemma: protecting biodiversity and human health: World Wildlife Fund, 1998. Available at: https://www.wwf.eu/?4107/Resolving-the-DDT-Dilemma-Protecting-Biodiversityand-Human-Health-June-1998-Executive-summary.

15. Dagen M. History of malaria and its treatment. In: Antimalarial agents. Ed. by G.L. Patrick. Elsevier, 2020. Pp. 1–48.

16. Karunaweera N.D., Galappaththy G.N., Wirth D.F. On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs. Malar J 2014;13:59. DOI: 10.1186/1475-2875-13-59

17. Choudhury D.S. Malaria in India: past, present and future. Indian J Pediatr 1985;52(416):243–8. DOI: 10.1007/BF02754849

18. Мельников Н.Н. Пестициды: химия, технология и применение. М.: Химия, 1987. Melnikov N.N. Pesticides: chemistry, technology and application. Moscow: Khimiya, 1987. (In Russ.).

19. Carson R. Silent spring: 40th anniversary edition. Boston: Houghton Mifflin, 2002.

20. Loomis D., Guyton K., Grosse Y. et al. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid. Lancet Oncol 2015;16(8):891–2. DOI: 10.1016/S1470-2045(15)00081-9

21. Stockholm convention on persistent organic pollutants. 2001. Available at: http://chm.pops.int/portals/0/repository/convention_text/unep-pops-cop-convtext-full.english.pdf.

22. Sitohang V., Sariwati E., Fajariyani S.B. et al. Malaria elimination in Indonesia: halfway there. Lancet Glob Health 2018;6(6):e604–6. DOI: 10.1016/S2214-109X(18)30198-0

23. World malaria report. Geneva, 2022. Available at: https://www.who.int/teams/global-malaria-programme/reports/world-malariareport-2023.

24. Rehwagen C. WHO recommends DDT to control malaria. BMJ 2006;333(7569):622. DOI: 10.1136/bmj.333.7569.622-b

25. Regulation (EC) No 850/2004 of the European Parliament and of the Council on persistent organic pollutants and amending (Directive 79/117/EEC), 2004. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:229:0005:0022:EN:PDF.

26. Gef. Projects database. Available at: https://www.thegef.org/projects-operations/database.

27. WHO guidelines for malaria. Geneva, 2023. Available at: https:// iris.who.int/bitstream/handle/10665/373339/WHO-UCN-GMP-2023.01-Rev.1-eng.pdf.

28. Ndikumukiza C., Yunusa I., Nkurunziza J. et al. Adoption of RTS, S malaria vaccine for children younger than 5 years in Rwanda: a budget impact analysis. Explor Res Clin Soc Pharm 2021;3:100063. DOI: 10.1016/j.rcsop.2021.100063

29. Moon J.E., Greenleaf M.E., Regules J.A. et al. A phase IIA extension study evaluating the effect of booster vaccination with a fractional dose of RTS,S/AS01(E) in a controlled human malaria infection challenge. Vaccine 2021;39(43):6398–406. DOI: 10.1016/j.vaccine.2021.09.024

30. Devi S. 12 countries to get first doses of malaria vaccine. Lancet 2023;402(10397):172. DOI: 10.1016/S0140-6736(23)01456-3

31. Daubenberger C.A., Moncunill G. Next-generation malaria subunit vaccines to reduce disease burden in African children. Lancet Infect Dis 2022;22(12):1655–6. DOI: 10.1016/S1473-3099(22)00523-0

32. Toxicological profile for DDT, DDE, and DDD. Agency for Toxic Substances and Disease Registry, 2022.

33. Zhu X., Dsikowitzky L., Kucher S. et al. Formation and fate of point-source nonextractable DDT-related compounds on their environmental aquatic-terrestrial pathway. Environ Sci Technol 2019;53(3):1305–14. DOI: 10.1021/acs.est.8b06018

34. Chattopadhyay S., Chattopadhyay D. Remediation of DDT and its metabolites in contaminated sediment. Current Pollution Reports 2015;1(4):248–64. DOI: 10.1007/s40726-015-0023-z

35. Xu H.J., Bai J., Li W. et al. Mechanisms of the enhanced DDT removal from soils by earthworms: identification of DDT degraders in drilosphere and non-drilosphere matrices. J Hazard Mater 2021;404(Pt. B):124006. DOI: 10.1016/j.jhazmat.2020.124006

36. Koureas M., Rousou X., Haftiki H. et al. Spatial and temporal distribution of p,p’-DDE (1-dichloro-2,2-bis (p-chlorophenyl) ethylene) blood levels across the globe. A systematic review and meta-analysis. Sci Total Environ 2019;686:440–51. DOI: 10.1016/j.scitotenv.2019.05.261

37. Truong K.M., Cherednichenko G., Pessah I.N. Interactions of dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldi chloroethylene (DDE) with skeletal muscle ryanodine receptor type 1. Toxicol Sci 2019;170(2):509–24. DOI: 10.1093/toxsci/kfz120

38. Chavez-Almazan L.A., Saldarriaga-Norena H.A, Díaz-González L. et al. Relationship between DDT concentrations with multiparity and breastfeeding history. Bull Environ Contam Toxicol 2023;111(3):27. DOI: 10.1007/s00128-023-03785-7

39. Lopez-Carrillo L., Torres-Sanchez L., Moline J. et al. Breastfeeding and serum p,p’DDT levels among Mexican women of childbearing age: a pilot study. Environ Res 2001;87(3):131–5. DOI: 10.1006/enrs.2001.4296

40. Wang H., Li J., Gao Y. et al. Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Asian J Androl 2010;12(4):535–47. DOI: 10.1038/aja.2010.14

41. Matsushima A. A novel action of endocrine-disrupting chemicals on wildlife; DDT and its derivatives have remained in the environment. Int J Mol Sci 2018;19(5):1377. DOI: 10.3390/ijms19051377

42. Danzo B.J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ Health Perspect 1997;105(3):294–301. DOI: 10.1289/ehp.97105294

43. Roszko M.L., Kaminska M., Szymczyk K. et al. Endocrine disrupting potency of organic pollutant mixtures isolated from commercial fish oil evaluated in yeast-based bioassays. PLoS One 2018;13(5):e0197907. DOI: 10.1371/journal.pone.0197907

44. Wetterauer B., Ricking M., Otte J.C. et al. Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites – DDA, DDMU, DDMS, and DDCN. Environ Sci Pollut Res Int 2012;19(2):403–15. DOI: 10.1007/s11356-011-0570-9

45. Wang L., Zhou L., Liu L. et al. Comparative in vitro and in silico study on the estrogenic effects of 2,2-bis(4-chlorophenyl)ethanol, 4,4’-dichlorobenzophenone and DDT analogs. Sci Total Environ 2023;876:162734. DOI: 10.1016/j.scitotenv.2023.162734

46. Frigo D.E., Burow M.E., Mitchell K.A. et al. DDT and its metabolites alter gene expression in human uterine cell lines through estrogen receptor-independent mechanisms. Environ Health Perspect 2002;110(12):1239–45. DOI: 10.1289/ehp.021101239

47. Zhuang S., Zhang J., Wen Y. et al. Distinct mechanisms of endocrine disruption of DDT-related pesticides toward estrogen receptor alpha and estrogen-related receptor gamma. Environ Toxicol Chem 2012;31(11):2597–605. DOI: 10.1002/etc.1986

48. Wang L., Qie Y., Yang Y., Zhao Q. Binding and activation of estrogen-related receptor gamma: a novel molecular mechanism for the estrogenic disruption effects of DDT and its metabolites. Environ Sci Technol 2022;56(17):12358–67. DOI: 10.1021/acs.est.1c08624

49. Wojtowicz A.K., Gregoraszczuk E.L., Ptak A., Falandysz J. Effect of single and repeated in vitro exposure of ovarian follicles to o,p’-DDT and p,p’-DDT and their metabolites. Pol J Pharmacol 2004;56(4):465–72.

50. Stancel G.M., Ireland J.S., Mukku V.R., Robison A.K. The estrogenic activity of DDT: in vivo and in vitro induction of a specific estrogen inducible uterine protein by o,p’-DDT. Life Sci 1980;27(12):1111–7. DOI: 10.1016/0024-3205(80)90037-5

51. Morozova O.V., Riboli E., Turusov V.S. Estrogenic effect of DDT in CBA female mice. Exp Toxicol Pathol 1997;49(6):483–5. DOI: 10.1016/S0940-2993(97)80144-3

52. Klotz D.M., Ladlie B.L., Vonier P.M. et al. o,p’-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Mol Cell Endocrinol 1997;129(1):63–71. DOI: 10.1016/s0303-7207(96)04041-5

53. Liu J., Zhao M., Zhuang S. et al. Low concentrations of o,p’-DDT inhibit gene expression and prostaglandin synthesis by estrogen receptor-independent mechanism in rat ovarian cells. PLoS One 2012;7(11):e49916. DOI: 10.1371/journal.pone.0049916

54. Turusov V.S., Day N.E., Tomatis L. et al. Tumors in CF-1 mice exposed for six consecutive generations to DDT. J Natl Cancer Inst 1973;51(3):983–97. DOI: 10.1093/jnci/51.3.983

55. Windham G.C., Lee D., Mitchell P. et al. Exposure to organochlorine compounds and effects on ovarian function. Epidemiology 2005;16(2):182–90. DOI: 10.1097/01.ede.0000152527.24339.17

56. Perry M.J., Ouyang F., Korrick S.A. et al. A prospective study of serum DDT and progesterone and estrogen levels across the menstrual cycle in nulliparous women of reproductive age. Am J Epidemiol 2006;164(11):1056–64. DOI: 10.1093/aje/kwj329

57. Yin S., Wei J., Wei Y. et al. Organochlorine pesticides exposure may disturb homocysteine metabolism in pregnant women. Sci Total Environ 2020;708:135146. DOI: 10.1016/j.scitotenv.2019.135146

58. Guo H., Jin Y., Cheng Y. et al. Prenatal exposure to organochlorine pesticides and infant birth weight in China. Chemosphere 2014;110:1–7. DOI: 10.1016/j.chemosphere.2014.02.017

59. Tyagi V., Garg N., Mustafa M.D. et al. Organochlorine pesticide levels in maternal blood and placental tissue with reference to preterm birth: a recent trend in North Indian population. Environ Monit Assess 2015;187(7):471. DOI: 10.1007/s10661-015-4369-x

60. Anand M., Singh L., Agarwal P. et al. Pesticides exposure through environment and risk of pre-term birth: a study from Agra city. Drug Chem Toxicol 2019;42(5):471–7. DOI: 10.1080/01480545.2017.1413107

61. Jaga K., Dharmani C. Global surveillance of DDT and DDE levels in human tissues. Int J Occup Med Environ Health 2003;16(1):7–20.

62. Torres-Arreola L., Lopez-Carrillo L., Torres-Sanchez L. et al. Levels of dichloro-dyphenyl-trichloroethane (DDT) metabolites in maternal milk and their determinant factors. Arch Environ Health 1999;54(2):124–9. DOI: 10.1080/00039899909602247

63. Hui L.L., Hedley A.J., Kypke K. et al. DDT levels in human milk in Hong Kong, 2001-02. Chemosphere 2008;73(1):50–5. DOI: 10.1016/j.chemosphere.2008.05.045

64. Al-Saleh I., Al-Doush I., Alsabbaheen A. et al. Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. Sci Total Environ 2012;416:62–74. DOI: 10.1016/j.scitotenv.2011.11.020

65. Mekonen S., Ambelu A., Wondafrash M. et al. Exposure of infants to organochlorine pesticides from breast milk consumption in southwestern Ethiopia. Sci Rep 2021;11(1):22053. DOI: 10.1038/s41598-021-01656-x

66. Fedorov L.A., Yablokov A.V. Pesticides – a toxic blow to the biosphere and man. Moscow: Tcentr ekologicheskoy politiki Rossii, 1999. (In Russ.).

67. Witczak A., Pohorylo A., Abdel-Gawad H. Endocrine-disrupting organochlorine pesticides in human breast milk: changes during lactation. Nutrients 2021;13(1):229. DOI: 10.3390/nu13010229

68. Coker E., Chevrier J., Rauch S. et al. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ Int 2018;113:122–32. DOI: 10.1016/j.envint.2018.01.016

69. Chevrier J., Rauch S., Crause M. et al. Associations of maternal exposure to dichlorodiphenyltrichloroethane and pyrethroids with birth outcomes among participants in the venda health examination of mothers, babies and their environment residing in an area sprayed for malaria control. Am J Epidemiol 2019;188(1):130–40. DOI: 10.1093/aje/kwy143

70. Theile D., Haefeli W.E., Weiss J. Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro. Endocrine 2015;49(3):842–53. DOI: 10.1007/s12020-014-0517-2

71. You L., Sar M., Bartolucci E. et al. Induction of hepatic aromatase by p,p’-DDE in adult male rats. Mol Cell Endocrinol 2001;178(1–2): 207–14. DOI: 10.1016/s0303-7207(01)00445-2

72. Holloway A.C., Stys K.A., Foster W.G. DDE-induced changes in aromatase activity in endometrial stromal cells in culture. Endocrine 2005;27(1):45–50. DOI: 10.1385/ENDO:27:1:045

73. Karmaus W., Osuch J.R., Landgraf J. et al. Prenatal and concurrent exposure to halogenated organic compounds and gene expression of CYP17A1, CYP19A1, and oestrogen receptor alpha and beta genes. Occup Environ Med 2011;68(6):430–7. DOI: 10.1136/oem.2009.053249

74. Kelce W.R., Stone C.R., Laws S.C. et al. Persistent DDT metabolite p,p’-DDE is a potent androgen receptor antagonist. Nature 1995;375(6532):581–5. DOI: 10.1038/375581a0

75. Maness S.C., McDonnell D.P., Gaido K.W. Inhibition of androgen receptor-dependent transcriptional activity by DDT isomers and methoxychlor in HepG2 human hepatoma cells. Toxicol Appl Pharmacol 1998;151(1):135–42. DOI: 10.1006/taap.1998.8431

76. Xu L.C., Sun H., Chen J.F. et al. Androgen receptor activities of p,p’-DDE, fenvalerate and phoxim detected by androgen receptor reporter gene assay. Toxicol Lett 2006;160(2):151–7. DOI: 10.1016/j.toxlet.2005.06.016

77. Patrick S.M., Bornman M.S., Joubert A.M. et al. Effects of environmental endocrine disruptors, including insecticides used for malaria vector control on reproductive parameters of male rats. Reprod Toxicol 2016;61:19–27. DOI: 10.1016/j.reprotox.2016.02.015

78. O’Connor J.C., Frame S.R., Davis L.G., Cook J.C. Detection of the environmental antiandrogen p,p-DDE in CD and long-evans rats using a tier I screening battery and a Hershberger assay. Toxicol Sci 1999;51(1):44–53. DOI: 10.1093/toxsci/51.1.44

79. Kelce W.R., Lambright C.R., Gray L.E., Roberts K.P. Vinclozolin and p,p’-DDE alter androgen-dependent gene expression: in vivo confirmation of an androgen receptor-mediated mechanism. Toxicol Appl Pharmacol 1997;142(1):192–200. DOI: 10.1006/taap.1996.7966

80. Lundberg Giwercman Y. Androgen receptor genotype in humans and susceptibility to endocrine disruptors. Horm Res Paediatr 2016;86(4):264–70. DOI: 10.1159/000443686

81. You L., Gazi E., Archibeque-Engle S. et al. Transplacental and lactational transfer of p,p’-DDE in Sprague-Dawley rats. Toxicol Appl Pharmacol 1999;157(2):134–44. DOI: 10.1006/taap.1999.8673

82. Quan C., Shi Y., Wang C. et al. p,p’-DDE damages spermatogenesis via phospholipid hydroperoxide glutathione peroxidase depletion and mitochondria apoptosis pathway. Environ Toxicol 2016;31(5):593–600. DOI: 10.1002/tox.22072

83. Molina E.M., Kavazis A.N., Mendonca M.T., Akingbemi B.T. Effects of different DDE exposure paradigms on testicular steroid hormone secretion and hepatic oxidative stress in male Long-Evans rats. Gen Comp Endocrinol 2022;317:113963. DOI: 10.1016/j.ygcen.2021.113963

84. Brien S.E., Heaton J.P., Racz W.J., Adams M.A. Effects of an environmental anti-androgen on erectile function in an animal penile erection model. J Urol 2000;163(4):1315–21.

85. Longnecker M.P., Gladen B.C., Cupul-Uicab L.A. et al. In utero exposure to the antiandrogen 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) in relation to anogenital distance in male newborns from Chiapas, Mexico. Am J Epidemiol 2007;165(9):1015–22. DOI: 10.1093/aje/kwk109

86. Garcia-Villarino M., Riano-Galan I., Rodriguez-Dehli A.C. et al. Association between pre/perinatal exposure to POPs and children’s anogenital distance at age 4 years: a study from the INMA-Asturias cohort. Int J Hyg Environ Health 2020;229:113563. DOI: 10.1016/j.ijheh.2020.113563

87. Bornman R., Acerini C.L., Chevrier J. et al. Maternal exposure to DDT, DDE, and pyrethroid insecticides for malaria vector control and hypospadias in the VHEMBE birth cohort study, Limpopo, South Africa. Sci Total Environ 2022;845:157084. DOI: 10.1016/j.scitotenv.2022.157084

88. Torres-Sanchez L., Zepeda M., Cebrian M.E. et al. Dichlorodiphen yldichloroethylene exposure during the first trimester of pregnancy alters the anal position in male infants. Ann N Y Acad Sci 2008;1140:155–62. DOI: 10.1196/annals.1454.004

89. Aneck-Hahn N.H., Schulenburg G.W., Bornman M.S. et al. Impaired semen quality associated with environmental DDT exposure in young men living in a malaria area in the Limpopo Province, South Africa. J Androl 2007;28(3):423–34. DOI: 10.2164/jandrol.106.001701

90. de Jager C., Aneck-Hahn N.H., Bornman M.S. et al. DDT exposure levels and semen quality of young men from a malaria area in South Africa. Malaria J 2012;11(1):P21. DOI: 10.1186/1475-2875-11-S1-P21

91. Bornman M., Delport R., Farias P. et al. Alterations in male reproductive hormones in relation to environmental DDT exposure. Environ Int 2018;113:281–9. DOI: 10.1016/j.envint.2017.12.039

92. Amir S., Tzatzarakis M., Mamoulakis C. et al. Impact of organochlorine pollutants on semen parameters of infertile men in Pakistan. Environ Res 2021;195:110832. DOI: 10.1016/j.envres.2021.110832

93. Regidor E., Ronda E., Garcia A.M., Dominguez V. Paternal exposure to agricultural pesticides and cause specific fetal death. Occup Environ Med 2004;61(4):334–9. DOI: 10.1136/oem.2003.009043

94. Lismer A., Shao X., Dumargne M.C. et al. The association between long-term DDT or DDE exposures and an altered sperm epigenome – a cross-sectional study of Greenlandic Inuit and South African VhaVenda men. Environ Health Perspect 2024;132(1):17008. DOI: 10.1289/EHP12013

95. Liu C., Shi Y., Li H. et al. p,p’-DDE disturbs the homeostasis of thyroid hormones via thyroid hormone receptors, transthyretin, and hepatic enzymes. Horm Metab Res 2011;43(6):391–6. DOI: 10.1055/s-0031-1277135

96. Kronke A.A., Jurkutat A., Schlingmann M. et al. Persistent organic pollutants in pregnant women potentially affect child development and thyroid hormone status. Pediatr Res 2022;91(3):690–8. DOI: 10.1038/s41390-021-01488-5

97. Yamazaki K., Itoh S., Araki A. et al. Associations between prenatal exposure to organochlorine pesticides and thyroid hormone levels in mothers and infants: the Hokkaido study on environment and children’s health. Environ Res 2020;189:109840. DOI: 10.1016/j.envres.2020.109840

98. Chevrier J., Rauch S., Obida M. et al. Sex and poverty modify associations between maternal peripartum concentrations of DDT/E and pyrethroid metabolites and thyroid hormone levels in neonates participating in the VHEMBE study, South Africa. Environ Int 2019;131:104958. DOI: 10.1016/j.envint.2019.104958

99. Kim S., Cho Y.H., Won S. et al. Maternal exposures to persistent organic pollutants are associated with DNA methylation of thyroid hormone-related genes in placenta differently by infant sex. Environ Int 2019;130:104956. DOI: 10.1016/j.envint.2019.104956

100. Beck D., Ben Maamar M., Skinner M.K. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenetics Chromatin 2021;14(1):6. DOI: 10.1186/s13072-020-00378-0

101. Hu J., Yang Y., Lv X. et al. Dichlorodiphenyltrichloroethane metabolites inhibit DNMT1 activity which confers methylationspecific modulation of the sex determination pathway. Environ Pollut 2021;279:116828. DOI: 10.1016/j.envpol.2021.116828

102. Nilsson E., Klukovich R., Sadler-Riggleman I. et al. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics 2018;13(8):875–95. DOI: 10.1080/15592294.2018.1521223

103. Skinner M.K., Ben Maamar M., Sadler-Riggleman I. et al. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018;11(1):8. DOI: 10.1186/s13072-018-0178-0

104. King S.E., McBirney M., Beck D. et al. Sperm epimutation biomarkers of obesity and pathologies following DDT induced epigenetic transgenerational inheritance of disease. Environ Epigenet 2019;5(2):dvz008. DOI: 10.1093/eep/dvz008

105. da Cruz R.S., Dominguez O., Chen E. et al. Environmentally induced sperm RNAs transmit cancer susceptibility to offspring in a mouse model. Res Sq 2023:rs.3.rs-2507391. DOI: 10.21203/rs.3.rs-2507391/v1

106. McGlynn K.A., Abnet C.C., Zhang M.S. et al. Serum concentrations of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and risk of primary liver cancer. J Natl Cancer Inst 2006;98(14):1005–10. DOI: 10.1093/jnci/djj266

107. Zhao B., Shen H., Liu F. et al. Exposure to organochlorine pesticides is an independent risk factor of hepatocellular carcinoma: a case-control study. J Expo Sci Environ Epidemiol 2012;22(6):541–8. DOI: 10.1038/jes.2011.29

108. Barsouk A., Thandra K.C., Saginala K. et al. Chemical risk factors of primary liver cancer: an update. Hepat Med 2020;12:179–88. DOI: 10.2147/HMER.S278070

109. Jin X., Chen M., Song L. et al. The evaluation of p,p’-DDT exposure on cell adhesion of hepatocellular carcinoma. Toxicology 2014;322:99–108. DOI: 10.1016/j.tox.2014.05.002

110. McGlynn K.A., Quraishi S.M., Graubard B.I. et al. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst 2008;100(9):663–71. DOI: 10.1093/jnci/djn101

111. Purdue M.P., Engel L.S., Langseth H. et al. Prediagnostic serum concentrations of organochlorine compounds and risk of testicular germ cell tumors. Environ Health Perspect 2009;117(10):1514–9. DOI: 10.1289/ehp.0800359

112. Brauner E.V., Sorensen M., Gaudreau E. et al. A prospective study of organochlorines in adipose tissue and risk of non‑Hodgkin lymphoma. Environ Health Perspect 2012;120(1):105–11. DOI: 10.1289/ehp.1103573

113. Alavanja M.C., Hofmann J.N., Lynch C.F. et al. Non-hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One 2014;9(10):e109332. DOI: 10.1371/journal.pone.0109332

114. Quintana P.J., Delfino R.J., Korrick S. et al. Adipose tissue levels of organochlorine pesticides and polychlorinated biphenyls and risk of non-Hodgkin’s lymphoma. Environ Health Perspect 2004;112(8):854–61. DOI: 10.1289/ehp.6726

115. Frigo D.E., Burow M.E., Mitchell K.A. et al. DDT and its metabolites alter gene expression in human uterine cell lines through estrogen receptor-independent mechanisms. Environ Health Perspect 2002;110(12):1239–45. DOI: 10.1289/ehp.021101239

116. Jaga K. What are the implications of the interaction between DDT and estrogen receptors in the body? Med Hypotheses 2000;54(1):18–25. DOI: 10.1054/mehy.1998.0811

117. Lopez-Cervantes M., Torres-Sanchez L., Tobias A., Lopez-Carrillo L. Dichlorodiphenyldichloroethane burden and breast cancer risk: a meta-analysis of the epidemiologic evidence. Environ Health Perspect 2004;112(2):207–14. DOI: 10.1289/ehp.112-1241830

118. Tarone R.E. DDT and breast cancer. Environ Health Perspect 2008;116(4):A153-A. DOI: 10.1289/ehp.11025

119. Morgan D.P., Roan C.C. Loss of DDT from storage in human body fat. Nature 1972;238(5361):221–3. DOI: 10.1038/238221a0

120. Cohn B.A., Wolff M.S., Cirillo P.M., Sholtz R.I. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect 2007;115(10):1406–14. DOI: 10.1289/ehp.10260

121. Soto A.M., Sonnenschein C. Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol 2010;6(7):363–70. DOI: 10.1038/nrendo.2010.87

122. Cohn B.A., Cirillo P.M., Terry M.B. DDT and breast cancer: prospective study of induction time and susceptibility windows. J Natl Cancer Inst 2019;111(8):803–10. DOI: 10.1093/jnci/djy198

123. La Merrill M.A., Krigbaum N.Y., Cirillo P.M., Cohn B.A. Association between maternal exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and risk of obesity in middle age. Int J Obes (Lond) 2020;44(8):1723–32. DOI: 10.1038/s41366-020-0586-7

124. Cirillo P.M., La Merrill M.A., Krigbaum N.Y., Cohn B.A. Grandmaternal perinatal serum DDT in relation to granddaughter early menarche and adult obesity: three generations in the child health and development studies cohort. Cancer Epidemiol Biomarkers Prev 2021;30(8):1480–8. DOI: 10.1158/1055-9965.EPI-20-1456

125. Cohn B.A., La Merrill M., Krigbaum N.Y. et al. DDT Exposure in utero and breast cancer. J Clin Endocrinol Metab 2015;100(8):2865–72. DOI: 10.1210/jc.2015-1841

126. Krigbaum N.Y., Cirillo P.M., Flom J.D. et al. In utero DDT exposure and breast density before age 50. Reprod Toxicol 2020;92:85–90. DOI: 10.1016/j.reprotox.2019.11.002

127. Belitsky G.A., Kirsanov K.I., Lesovaya E.A. et al. Chemical carcinogenesis and primary cancer prevention. Moscow: ABV-press, 2020. (In Russ.).

128. Sierra-Santoyo A., Hernandez M., Albores A., Cebrian M.E. Sex-dependent regulation of hepatic cytochrome P-450 by DDT. Toxicol Sci 2000;54(1):81–7. DOI: 10.1093/toxsci/54.1.81

129. Song L., Zhao J., Jin X. et al. The organochlorine p,p’- dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnt/beta-catenin signaling. Toxicol Lett 2014;229(1):284–91. DOI: 10.1016/j.toxlet.2014.06.003

130. Jin X.T., Song L., Zhao J.Y. et al. Dichlorodiphenyltrichloroethane exposure induces the growth of hepatocellular carcinoma via Wnt/ beta-catenin pathway. Toxicol Lett 2014;225(1):158–66. DOI: 10.1016/j.toxlet.2013.12.006

131. Zhao M., Wang C., Zhang C. et al. Enantioselective cytotoxicity profile of o,p’-DDT in PC 12 cells. PLoS One 2012;7(8):e43823. DOI: 10.1371/journal.pone.0043823

132. Martin T.J., Maise J., Gabure S., Whalen M.M. Exposures to the environmental contaminants pentachlorophenol and dichlorodiphenyltrichloroethane increase production of the proinflammatory cytokine, interleukin-1beta, in human immune cells. J Appl Toxicol 2019;39(8):1132–42. DOI: 10.1002/jat.3798

133. Martin T.J., Gabure S., Maise J. et al. The organochlorine pesticides pentachlorophenol and dichlorodiphenyltrichloroethane increase secretion and production of interleukin 6 by human immune cells. Environ Toxicol Pharmacol 2019;72:103263. DOI: 10.1016/j.etap.2019.103263

134. Han E.H., Kim J.Y., Kim H.K. et al. o,p’-DDT induces cyclooxygenase-2 gene expression in murine macrophages: role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways. Toxicol Appl Pharmacol 2008;233(2):333–42. DOI: 10.1016/j.taap.2008.09.003

135. Bratton M.R., Frigo D.E., Segar H.C. et al. The organochlorine o,p’-DDT plays a role in coactivator-mediated MAPK crosstalk in MCF-7 breast cancer cells. Environ Health Perspect 2012;120(9):1291–6. DOI: 10.1289/ehp.1104296

136. Shi Y., Song Y., Wang Y. et al. p,p’-DDE induces apoptosis of rat Sertoli cells via a FasL-dependent pathway. J Biomed Biotechnol 2009;2009:181282. DOI: 10.1155/2009/181282

137. Song Y., Liang X., Hu Y. et al. p,p’-DDE induces mitochondria-mediated apoptosis of cultured rat Sertoli cells. Toxicology 2008;253(1–3):53–61. DOI: 10.1016/j.tox.2008.08.013

138. Frigo D.E., Tang Y., Beckman B.S. et al. Mechanism of AP-1-mediated gene expression by select organochlorines through the p38 MAPK pathway. Carcinogenesis 2004;25(2):249–61. DOI: 10.1093/carcin/bgh009


Review

For citations:


Morozova O.V., Bukina A.Yu., Popova V.G., Khairieva G.I., Sagitova G.R., Belitsky G.A., Yakubovskaya M.G., Kirsanov K.I., Maksimova V.P. Two-faced Janus: on the 150th anniversary of the discovery of DDT. Advances in Molecular Oncology. 2024;11(3):41-55. (In Russ.) https://doi.org/10.17650/2313-805X-2024-11-3-41-55

Views: 259


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)